解释代码def accuracy(y_pred, y_true): y_pred_cls = torch.argmax(nn.Softmax(dim=1)(y_pred), dim=1).data return accuracy_score(y_true.cpu().numpy(), y_pred_cls.cpu().numpy())
时间: 2023-06-02 12:02:28 浏览: 203
这段代码实现了一个计算分类任务准确率的函数。具体来说:
1. 输入参数:
- y_pred:模型的预测结果,是一个形状为(batch_size, n_classes)的张量,其中n_classes表示分类的类别数。
- y_true:真实的标签值,是一个形状为(batch_size,)的张量。
2. 首先通过torch.argmax函数找到每个样本预测结果中概率最大的类别,即将y_pred从(batch_size, n_classes)的张量转换为(batch_size,)的张量。
3. 然后使用nn.Softmax函数对y_pred进行softmax操作,将预测结果转换为概率分布。在这里使用dim=1表示对第二个维度进行softmax操作,即对每个样本的n_classes个类别分别进行softmax。
4. 最后使用sklearn库中的accuracy_score函数计算准确率。需要注意的是,y_true和y_pred_cls都需要先转换为numpy数组,并且在计算准确率前需要将它们转移到CPU上。
总之,这段代码实现了一个计算分类准确率的函数,它将模型的预测结果和真实标签值作为输入,并返回准确率。
相关问题
import tensorflow as tfdef cross_entropy_loss(y_true, y_pred): # 计算交叉熵损失 cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=y_pred) return tf.reduce_mean(cross_entropy)def boundary_loss(y_true, y_pred): # 计算边界损失 boundary_filter = tf.constant([[0, 1, 0], [1, -4, 1], [0, 1, 0]], dtype=tf.float32) y_true_boundary = tf.nn.conv2d(y_true, boundary_filter, strides=[1, 1, 1, 1], padding='SAME') y_pred_boundary = tf.nn.conv2d(y_pred, boundary_filter, strides=[1, 1, 1, 1], padding='SAME') boundary_loss = tf.reduce_mean(tf.square(y_true_boundary - y_pred_boundary)) return boundary_lossdef total_loss(y_true, y_pred): # 总损失函数 = 交叉熵损失 + 边界损失 return cross_entropy_loss(y_true, y_pred) + 0.5 * boundary_loss(y_true, y_pred)# 构建模型model = ...# 编译模型model.compile(optimizer='adam', loss=total_loss, metrics=['accuracy'])
可以将这部分代码转化为PyTorch,转化后的代码如下:
import torch
import torch.nn as nn
import torch.nn.functional as F
def cross_entropy_loss(y_true, y_pred):
# 计算交叉熵损失
cross_entropy = nn.CrossEntropyLoss()(y_pred, y_true)
return cross_entropy
def boundary_loss(y_true, y_pred):
# 计算边界损失
boundary_filter = torch.tensor([[0, 1, 0], [1, -4, 1], [0, 1, 0]], dtype=torch.float32)
boundary_filter = boundary_filter.view(1, 1, 3, 3)
y_true_boundary = F.conv2d(y_true, boundary_filter, padding=1)
y_pred_boundary = F.conv2d(y_pred, boundary_filter, padding=1)
boundary_loss = F.mse_loss(y_true_boundary, y_pred_boundary)
return boundary_loss
def total_loss(y_true, y_pred):
# 总损失函数 = 交叉熵损失 + 边界损失
return cross_entropy_loss(y_true, y_pred) + 0.5 * boundary_loss(y_true, y_pred)
# 构建模型
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride=1, padding=1)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(32*8*8, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 32*8*8)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
model = Model()
# 编译模型
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
loss_fn = total_loss
metrics = ['accuracy']
import torch import torch.nn.functional as F import torch.optim as optim from torchvision import transforms from torchvision import datasets from torch.utils. data import DataI oader 补全代码
下面是一个基本的 PyTorch MNIST 数据集训练代码示例,包括数据加载、模型定义、优化器和损失函数的定义以及训练过程。
```
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
# 定义数据预处理
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
# 加载数据集
train_dataset = datasets.MNIST('data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST('data', train=False, download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
# 定义模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2(x), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)
net = Net()
# 定义优化器和损失函数
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.5)
criterion = nn.CrossEntropyLoss()
# 训练模型
def train(epoch):
net.train()
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = net(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if batch_idx % 10 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test():
net.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
output = net(data)
test_loss += criterion(output, target)
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
for epoch in range(1, 5):
train(epoch)
test()
```
这是一个简单的卷积神经网络模型,用于对 MNIST 手写数字进行分类。训练过程中使用了交叉熵损失函数和随机梯度下降优化器。
阅读全文