卷积神经网络以MNIST数据集为数据,实现对MNIST数据集分类的操作,其中MNIST数据集有10类分别为手写数字0-9。  五、实验步骤: 1.初始化MNIST数据集 2.卷积神经网络的搭建。 3.卷积神经网络的训练。 4. 可视化和结果分析代码

时间: 2023-12-03 18:21:19 浏览: 36
好的,以下是使用Python和PyTorch框架实现的MNIST数据集分类的完整代码: ``` import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms import matplotlib.pyplot as plt # 初始化MNIST数据集 train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])) test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64) # 卷积神经网络的搭建 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3) self.conv2 = nn.Conv2d(32, 64, kernel_size=3) self.dropout1 = nn.Dropout2d(0.25) self.dropout2 = nn.Dropout2d(0.5) self.fc1 = nn.Linear(9216, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = nn.functional.relu(x) x = self.conv2(x) x = nn.functional.relu(x) x = nn.functional.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = nn.functional.relu(x) x = self.dropout2(x) x = self.fc2(x) output = nn.functional.log_softmax(x, dim=1) return output # 卷积神经网络的训练 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = Net().to(device) optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) def train(epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = nn.functional.nll_loss(output, target) loss.backward() optimizer.step() if batch_idx % 10 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) def test(): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += nn.functional.nll_loss(output, target, reduction='sum').item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) accuracy = 100. * correct / len(test_loader.dataset) print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), accuracy)) for epoch in range(1, 11): train(epoch) test() # 可视化和结果分析 def plot_curve(train_losses, test_losses, test_accuracies): plt.figure(figsize=(10, 4)) plt.subplot(1, 2, 1) plt.plot(train_losses, label='Training loss') plt.plot(test_losses, label='Test loss') plt.legend() plt.xlabel('Epoch') plt.ylabel('Loss') plt.subplot(1, 2, 2) plt.plot(test_accuracies) plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.show() train_losses = [] test_losses = [] test_accuracies = [] for epoch in range(1, 11): train_loss = 0 for data, target in train_loader: data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = nn.functional.nll_loss(output, target) loss.backward() optimizer.step() train_loss += loss.item() * data.size(0) train_loss /= len(train_loader.dataset) train_losses.append(train_loss) test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += nn.functional.nll_loss(output, target, reduction='sum').item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) test_losses.append(test_loss) accuracy = 100. * correct / len(test_loader.dataset) test_accuracies.append(accuracy) plot_curve(train_losses, test_losses, test_accuracies) ``` 以上代码中,我们首先导入MNIST数据集并进行预处理,然后定义了一个包含两个卷积层、两个池化层和两个全连接层的卷积神经网络,并使用SGD优化器进行训练。在训练过程中,我们使用训练集对网络进行训练,并使用测试集对网络进行测试和评估。最后,我们使用matplotlib库绘制了训练和测试损失函数以及测试集准确率随训练次数的变化曲线。 希望这份代码能够帮助您完成MNIST数据集分类任务。

相关推荐

最新推荐

recommend-type

Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式

今天小编就为大家分享一篇Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

使用tensorflow实现VGG网络,训练mnist数据集方式

主要介绍了使用tensorflow实现VGG网络,训练mnist数据集方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

基于多分类非线性SVM(+交叉验证法)的MNIST手写数据集训练(无框架)算法

2.通过一对一方法将45类训练样本((0,1),(0,2),…(1,2)…(2,3))送入交叉验证法,训练算法为smo 3.得出45个模型,测试时在利用投票法判定 数据结构 '''***********************************************************...
recommend-type

Pytorch实现的手写数字mnist识别功能完整示例

主要介绍了Pytorch实现的手写数字mnist识别功能,结合完整实例形式分析了Pytorch模块手写字识别具体步骤与相关实现技巧,需要的朋友可以参考下
recommend-type

华为OD机试D卷 - 用连续自然数之和来表达整数 - 免费看解析和代码.html

私信博主免费获取真题解析以及代码
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

spring添加xml配置文件

1. 创建一个新的Spring配置文件,例如"applicationContext.xml"。 2. 在文件头部添加XML命名空间和schema定义,如下所示: ``` <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。