使用Strassen算法求两个2^k×2^k的矩阵的乘积的java代码,并分析算法的计算时间复杂性.
时间: 2024-02-21 17:01:17 浏览: 60
两个矩阵相乘的算法之java
4星 · 用户满意度95%
以下是使用Strassen算法求两个2^k×2^k的矩阵的乘积的Java代码:
```java
public class StrassenMatrixMultiplication {
public static int[][] multiply(int[][] A, int[][] B) {
int n = A.length;
int[][] C = new int[n][n];
if (n == 1) {
C[0][0] = A[0][0] * B[0][0];
} else {
int[][] A11 = new int[n/2][n/2];
int[][] A12 = new int[n/2][n/2];
int[][] A21 = new int[n/2][n/2];
int[][] A22 = new int[n/2][n/2];
int[][] B11 = new int[n/2][n/2];
int[][] B12 = new int[n/2][n/2];
int[][] B21 = new int[n/2][n/2];
int[][] B22 = new int[n/2][n/2];
// Divide matrices A and B into 4 sub-matrices
divide(A, A11, 0 , 0);
divide(A, A12, 0 , n/2);
divide(A, A21, n/2, 0);
divide(A, A22, n/2, n/2);
divide(B, B11, 0 , 0);
divide(B, B12, 0 , n/2);
divide(B, B21, n/2, 0);
divide(B, B22, n/2, n/2);
// Calculate 7 products recursively
int[][] P1 = multiply(add(A11, A22), add(B11, B22));
int[][] P2 = multiply(add(A21, A22), B11);
int[][] P3 = multiply(A11, sub(B12, B22));
int[][] P4 = multiply(A22, sub(B21, B11));
int[][] P5 = multiply(add(A11, A12), B22);
int[][] P6 = multiply(sub(A21, A11), add(B11, B12));
int[][] P7 = multiply(sub(A12, A22), add(B21, B22));
// Calculate sub-matrices of C
int[][] C11 = add(sub(add(P1, P4), P5), P7);
int[][] C12 = add(P3, P5);
int[][] C21 = add(P2, P4);
int[][] C22 = add(sub(add(P1, P3), P2), P6);
// Combine sub-matrices of C into C
copy(C11, C, 0 , 0);
copy(C12, C, 0 , n/2);
copy(C21, C, n/2, 0);
copy(C22, C, n/2, n/2);
}
return C;
}
// Divide matrix A into 4 sub-matrices
public static void divide(int[][] A, int[][] B, int iB, int jB) {
for(int i1 = 0, i2=iB; i1<B.length; i1++, i2++)
for(int j1 = 0, j2=jB; j1<B.length; j1++, j2++)
B[i1][j1] = A[i2][j2];
}
// Add matrices A and B
public static int[][] add(int[][] A, int[][] B) {
int n = A.length;
int[][] C = new int[n][n];
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
C[i][j] = A[i][j] + B[i][j];
return C;
}
// Subtract matrices A and B
public static int[][] sub(int[][] A, int[][] B) {
int n = A.length;
int[][] C = new int[n][n];
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
C[i][j] = A[i][j] - B[i][j];
return C;
}
// Copy matrix A into matrix B
public static void copy(int[][] A, int[][] B, int iB, int jB) {
for(int i1 = 0, i2=iB; i1<A.length; i1++, i2++)
for(int j1 = 0, j2=jB; j1<A.length; j1++, j2++)
B[i2][j2] = A[i1][j1];
}
public static void main(String[] args) {
int[][] A = { {1, 2}, {3, 4} };
int[][] B = { {5, 6}, {7, 8} };
int[][] C = multiply(A, B);
for (int i = 0; i < C.length; i++) {
for (int j = 0; j < C.length; j++) {
System.out.print(C[i][j] + " ");
}
System.out.println();
}
}
}
```
Strassen算法的时间复杂度为O(n^log2 7),其中n是矩阵的大小。在这里,n是2^k,因此时间复杂度为O(2^(k*log2 7)),即O(n^2.81)。在比较常见的情况下,Strassen算法的运行时间比传统的矩阵乘法算法要快,但对于较小的矩阵,传统的算法可能更快。
阅读全文