目标检测map计算公式

时间: 2023-09-08 10:11:49 浏览: 198
目标检测中常用的评价指标之一是平均精确度均值(mean Average Precision,mAP)。mAP是通过计算不同类别的平均精确度(Average Precision,AP)得到的平均值。 AP的计算涉及到 Precision 和 Recall。对于每个类别,先计算出不同置信度阈值下的 Precision 和 Recall 值。然后根据不同 Recall 水平下的 Precision 值,计算出 Precision-Recall 曲线。最后,通过计算曲线下面积得到 AP 值。 具体的计算公式如下: 1. 计算 Precision 和 Recall: Precision = TP / (TP + FP) Recall = TP / (TP + FN) 其中,TP表示真正例(True Positive),FP表示假正例(False Positive),FN表示假负例(False Negative)。 2. 根据不同 Recall 水平下的 Precision 值绘制 Precision-Recall 曲线。 3. 计算 AP 值: AP = \(\int_{0}^{1} p(r) dr\) 其中,p(r)表示在 Recall=r 时的 Precision 值。 4. 对于多类别目标检测,需要计算每个类别的 AP 值,并取其平均值作为 mAP。 这是一种常用的计算公式,但在实际应用中可能会有一些微调或变种,以适应具体的数据集和任务。
相关问题

目标检测mAP的计算公式

目标检测中的mAP是用来评估模型性能的指标,其计算公式如下: mAP = (AP1 + AP2 + ... + APn) / n 其中,n表示检测出的目标类别数,APi表示第i类目标的平均精度,即: APi = (TP1i / (TP1i + FP1i)) * (TP2i / (TP2i + FP2i)) * ... * (TPki / (TPki + FPki)) 其中,TP表示正确检测出的目标数量,FP表示错误检测出的目标数量,k表示在所有预测框中选择置信度前k个框进行计算。每个类别的APi最终求平均得到mAP。

目标检测map50和map50-95计算公式

### 目标检测中mAP50和mAP50-95的计算方法 #### mAP50 的定义与计算方式 mAP50 是指当 IoU(交并比)阈值设定为 0.5 时的目标检测模型平均精度。具体来说,在给定类别内,通过绘制不同置信度下的精确率(Precision)-召回率(Recall) 曲线来获得该类别的 AP (Average Precision),再对所有类别上的 AP 取平均值得到最终的 mAP50 值[^2]。 对于每一个类别 c ,其对应的 AP_c 计算如下: \[ \text{AP}_c = \int_0^1 p(r)\,dr \] 其中 \(p(r)\) 表示在特定召回率 r 下的最大精确率;积分操作可以理解成离散情况下求 PR 曲线下方区域面积的过程。因此, \[ \begin{align*} \text{mAP}_{50} &= \frac{\sum_{i=1}^{N}\text{AP}_{ci}}{N}\\ &=\frac{\sum_{i=1}^{N}\left(\int_0^1 p_i(r)\,dr\right)}{N}, \end{align*} \] 这里 N 表示总共有多少个类别 ci 被考虑进去。 #### mAP50-95 的定义与计算方式 不同于只在一个固定 IoU 阈值下测量表现的 mAP50,mAP50-95 则是在一组连续变化的 IoU 阈值范围内评估模型的表现,这组范围是从 0.5 至 0.95 步长为 0.05 。这意味着会分别针对这些不同的 IoU 条件重复上面提到过的 mAP 测量流程,并将所得的结果汇总起来作为综合评价标准[^1]。 所以, \[ \begin{align*} \text{mAP}_{50:95}&=\frac{\sum_j (\text{mAP}(IOU=j))}{|J|},\\ &j∈\{0.50,0.55,...,0.95\}. \end{align*} \] 这里的 |J| 表示所使用的 IoU 阈值数量,即在这个例子中有十个不同的 IoU 设置点用于测试。 ```python def calculate_mAP50(predictions, ground_truths): iou_threshold = 0.5 # Calculate precision and recall for each class at the given IOU threshold. def calculate_mAP50_to_95(predictions, ground_truths): iou_thresholds = np.arange(0.5, 1.0, 0.05) ap_scores = [] for thresh in iou_thresholds: # For each IOU threshold, compute the average precision across all classes return sum(ap_scores)/len(iou_thresholds) ```
阅读全文

相关推荐

最新推荐

recommend-type

python:目标检测模型预测准确度计算方式(基于IoU)

IoU的计算公式是两个框(一个是模型预测的检测结果DetectionResult,另一个是真实存在的GroundTruth)的交集面积除以它们的并集面积。具体来说,假设蓝色框代表GroundTruth,黄色框代表DetectionResult,那么绿色框...
recommend-type

多元Turbo码MAP译码算法(max-log-map)——详细推导.pdf

考虑到对数域的运算可以简化计算,我们可以将上述公式转换为: `log P(u_k|y_1...y_N) = max_{u_k'} log P(u_k', y_1...y_N)` 接下来,我们引入前向概率α和后向概率β,它们分别代表从起始状态到当前状态和从当前...
recommend-type

mmdetection 模型评测指标

mmdetection是一款流行的开源目标检测框架,它基于Python,主要用于深度学习领域的图像识别任务。在使用mmdetection训练模型时,通常会使用COCO(Common Objects in Context)数据集,这是一个广泛采用的多类别物体...
recommend-type

Fluent电弧,激光,熔滴一体模拟 UDF包括高斯旋转体热源、双椭球热源(未使用)、VOF梯度计算、反冲压力、磁场力、表面张力,以及熔滴过渡所需的熔滴速度场、熔滴温度场和熔滴VOF

Fluent电弧,激光,熔滴一体模拟。 UDF包括高斯旋转体热源、双椭球热源(未使用)、VOF梯度计算、反冲压力、磁场力、表面张力,以及熔滴过渡所需的熔滴速度场、熔滴温度场和熔滴VOF。
recommend-type

基于协同过滤算法商品推荐系统.zip

基于协同过滤算法商品推荐系统.zip
recommend-type

Python调试器vardbg:动画可视化算法流程

资源摘要信息:"vardbg是一个专为Python设计的简单调试器和事件探查器,它通过生成程序流程的动画可视化效果,增强了算法学习的直观性和互动性。该工具适用于Python 3.6及以上版本,并且由于使用了f-string特性,它要求用户的Python环境必须是3.6或更高。 vardbg是在2019年Google Code-in竞赛期间为CCExtractor项目开发而创建的,它能够跟踪每个变量及其内容的历史记录,并且还能跟踪容器内的元素(如列表、集合和字典等),以便用户能够深入了解程序的状态变化。" 知识点详细说明: 1. Python调试器(Debugger):调试器是开发过程中用于查找和修复代码错误的工具。 vardbg作为一个Python调试器,它为开发者提供了跟踪代码执行、检查变量状态和控制程序流程的能力。通过运行时监控程序,调试器可以发现程序运行时出现的逻辑错误、语法错误和运行时错误等。 2. 事件探查器(Event Profiler):事件探查器是对程序中的特定事件或操作进行记录和分析的工具。 vardbg作为一个事件探查器,可以监控程序中的关键事件,例如变量值的变化和函数调用等,从而帮助开发者理解和优化代码执行路径。 3. 动画可视化效果:vardbg通过生成程序流程的动画可视化图像,使得算法的执行过程变得生动和直观。这对于学习算法的初学者来说尤其有用,因为可视化手段可以提高他们对算法逻辑的理解,并帮助他们更快地掌握复杂的概念。 4. Python版本兼容性:由于vardbg使用了Python的f-string功能,因此它仅兼容Python 3.6及以上版本。f-string是一种格式化字符串的快捷语法,提供了更清晰和简洁的字符串表达方式。开发者在使用vardbg之前,必须确保他们的Python环境满足版本要求。 5. 项目背景和应用:vardbg是在2019年的Google Code-in竞赛中为CCExtractor项目开发的。Google Code-in是一项面向13到17岁的学生开放的竞赛活动,旨在鼓励他们参与开源项目。CCExtractor是一个用于从DVD、Blu-Ray和视频文件中提取字幕信息的软件。vardbg的开发过程中,该项目不仅为学生提供了一个实际开发经验的机会,也展示了学生对开源软件贡献的可能性。 6. 特定功能介绍: - 跟踪变量历史记录:vardbg能够追踪每个变量在程序执行过程中的历史记录,使得开发者可以查看变量值的任何历史状态,帮助诊断问题所在。 - 容器元素跟踪:vardbg支持跟踪容器类型对象内部元素的变化,包括列表、集合和字典等数据结构。这有助于开发者理解数据结构在算法执行过程中的具体变化情况。 通过上述知识点的详细介绍,可以了解到vardbg作为一个针对Python的调试和探查工具,在提供程序流程动画可视化效果的同时,还通过跟踪变量和容器元素等功能,为Python学习者和开发者提供了强大的支持。它不仅提高了学习算法的效率,也为处理和优化代码提供了强大的辅助功能。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【IT设备维保管理入门指南】:如何制定有效的维护计划,提升设备性能与寿命

![【IT设备维保管理入门指南】:如何制定有效的维护计划,提升设备性能与寿命](https://docs.plesk.com/en-US/onyx/administrator-guide/images/78798.webp) # 摘要 本文全面探讨了IT设备维保管理的各个方面,从理论基础到实践案例,再到技术革新和未来展望。首先概述了维保计划的重要性,强调了其在延长设备生命周期和提升性能稳定性方面的作用。接着,文中详细论述了维保计划的制定原则,包括预防性维护、设备分类及成本效益分析等。通过分析不同行业的实践案例,本文揭示了成功维保计划的关键因素,并提出了效果评估与改进的策略。随后,探讨了性能监
recommend-type

python爬取网页链接,url = “https://koubei.16888.com/57233/0-0-0-0”

在Python中,使用如`requests`库来发送HTTP请求并抓取网页链接是比较常见的做法。以下是如何使用`requests`和BeautifulSoup库(用于解析HTML)来爬取给定URL上的信息: 首先,确保已安装`requests`和`beautifulsoup4`库,如果未安装可以使用以下命令安装: ```bash pip install requests beautifulsoup4 ``` 然后,你可以编写以下Python脚本来爬取指定URL的内容: ```python import requests from bs4 import BeautifulSoup # 定义要
recommend-type

掌握Web开发:Udacity天气日记项目解析

资源摘要信息: "Udacity-Weather-Journal:Web开发路线的Udacity纳米度-项目2" 知识点: 1. Udacity:Udacity是一个提供在线课程和纳米学位项目的教育平台,涉及IT、数据科学、人工智能、机器学习等众多领域。纳米学位是Udacity提供的一种专业课程认证,通过一系列课程的学习和实践项目,帮助学习者掌握专业技能,并提供就业支持。 2. Web开发路线:Web开发是构建网页和网站的应用程序的过程。学习Web开发通常包括前端开发(涉及HTML、CSS、JavaScript等技术)和后端开发(可能涉及各种服务器端语言和数据库技术)的学习。Web开发路线指的是在学习过程中所遵循的路径和进度安排。 3. 纳米度项目2:在Udacity提供的学习路径中,纳米学位项目通常是实践导向的任务,让学生能够在真实世界的情境中应用所学的知识。这些项目往往需要学生完成一系列具体任务,如开发一个网站、创建一个应用程序等,以此来展示他们所掌握的技能和知识。 4. Udacity-Weather-Journal项目:这个项目听起来是关于创建一个天气日记的Web应用程序。在完成这个项目时,学习者可能需要运用他们关于Web开发的知识,包括前端设计(使用HTML、CSS、Bootstrap等框架设计用户界面),使用JavaScript进行用户交互处理,以及可能的后端开发(如果需要保存用户数据,可能会使用数据库技术如SQLite、MySQL或MongoDB)。 5. 压缩包子文件:这里提到的“压缩包子文件”可能是一个笔误或误解,它可能实际上是指“压缩包文件”(Zip archive)。在文件名称列表中的“Udacity-Weather-journal-master”可能意味着该项目的所有相关文件都被压缩在一个名为“Udacity-Weather-journal-master.zip”的压缩文件中,这通常用于将项目文件归档和传输。 6. 文件名称列表:文件名称列表提供了项目文件的结构概览,它可能包含HTML、CSS、JavaScript文件以及可能的服务器端文件(如Python、Node.js文件等),此外还可能包括项目依赖文件(如package.json、requirements.txt等),以及项目文档和说明。 7. 实际项目开发流程:在开发像Udacity-Weather-Journal这样的项目时,学习者可能需要经历需求分析、设计、编码、测试和部署等阶段。在每个阶段,他们需要应用他们所学的理论知识,并解决在项目开发过程中遇到的实际问题。 8. 技术栈:虽然具体的技术栈未在标题和描述中明确提及,但一个典型的Web开发项目可能涉及的技术包括但不限于HTML5、CSS3、JavaScript(可能使用框架如React.js、Angular.js或Vue.js)、Bootstrap、Node.js、Express.js、数据库技术(如上所述),以及版本控制系统如Git。 9. 学习成果展示:完成这样的项目后,学习者将拥有一个可部署的Web应用程序,以及一个展示他们技术能力的项目案例,这些对于未来的求职和职业发展都是有价值的。 10. 知识点整合:在进行Udacity-Weather-Journal项目时,学习者需要将所学的多个知识点融合在一起,包括前端设计、用户体验、后端逻辑处理、数据存储和检索、以及可能的API调用等。 总结来说,Udacity-Weather-Journal项目是Udacity Web开发纳米学位课程中的一个重要实践环节,它要求学习者运用他们所学到的前端和后端开发技能,完成一个具体的Web应用程序项目。通过完成这样的项目,学习者能够将理论知识转化为实践经验,并为他们未来在IT行业的职业发展打下坚实的基础。