LSTM进行时间序列预测波浪代码
时间: 2023-11-17 13:56:40 浏览: 86
使用LSTM进行时间序列预测
3星 · 编辑精心推荐
以下是一个使用LSTM进行时间序列预测的波浪代码,供您参考:
```python
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Dense, LSTM
# 读取数据
data = pd.read_csv('wave.csv', header=None)
data = data.values
# 数据预处理
train_size = int(len(data) * 0.67)
test_size = len(data) - train_size
train, test = data[0:train_size,:], data[train_size:len(data),:]
def create_dataset(dataset, look_back=1):
dataX, dataY = [], []
for i in range(len(dataset)-look_back-1):
a = dataset[i:(i+look_back), 0]
dataX.append(a)
dataY.append(dataset[i + look_back, 0])
return np.array(dataX), np.array(dataY)
look_back = 1
trainX, trainY = create_dataset(train, look_back)
testX, testY = create_dataset(test, look_back)
# 转换为3D格式 [样本数,时间步长,特征数]
trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))
testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1]))
# 创建LSTM模型
model = Sequential()
model.add(LSTM(4, input_shape=(1, look_back)))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2)
# 预测
trainPredict = model.predict(trainX)
testPredict = model.predict(testX)
# 反归一化
trainPredict = scaler.inverse_transform(trainPredict)
trainY = scaler.inverse_transform([trainY])
testPredict = scaler.inverse_transform(testPredict)
testY = scaler.inverse_transform([testY])
# 画图
plt.plot(trainY[0], label='train')
plt.plot([None for _ in trainY[0]] + [x for x in testPredict], label='test')
plt.legend()
plt.show()
```
阅读全文