用C++写出用交换两个变量的值的代码(要求要用传值调用,地址调用分别写出来))

时间: 2024-05-26 11:12:51 浏览: 57
传值调用: void swap(int a, int b){ int tmp = a; a = b; b = tmp; } int main(){ int x = 10, y = 20; swap(x, y); printf("x = %d, y = %d\n", x, y); //输出结果为 x = 10, y = 20 return 0; } 地址调用: void swap(int* a, int* b){ int tmp = *a; *a = *b; *b = tmp; } int main(){ int x = 10, y = 20; swap(&x, &y); printf("x = %d, y = %d\n", x, y); //输出结果为 x = 20, y = 10 return 0; }
相关问题

用c++ 编写一个交换函数,实现两个普通变量的值交换,并用主函数调用验证它。

以下是使用 C++ 编写的交换函数及主函数调用验证: ```cpp #include <iostream> using namespace std; void swap(int& a, int& b) { int temp = a; a = b; b = temp; } int main() { int x = 5; int y = 10; cout << "Before swapping: x = " << x << ", y = " << y << endl; swap(x, y); cout << "After swapping: x = " << x << ", y = " << y << endl; return 0; } ``` 输出结果: ``` Before swapping: x = 5, y = 10 After swapping: x = 10, y = 5 ``` 在上面的代码中,我们定义了一个交换函数 `swap`,该函数采用两个引用参数,并使用第三个变量来实现两个变量之间的交换。然后我们在主函数中定义两个变量 `x` 和 `y`,并在调用 `swap` 函数之前和之后打印它们的值来验证交换是否已成功。

用c++编写一个函数swap交换主函数中两个整型变量的值要求使用指针作为函数参数

### 回答1: 下面是一个使用指针作为参数的交换函数,可以交换两个整型变量的值: ```c++ void swap(int* a, int* b) { int tmp = *a; *a = *b; *b = tmp; } ``` 在主函数中,可以调用这个函数来交换两个变量的值: ```c++ int main() { int x = 1, y = 2; cout << "Before swap: x = " << x << ", y = " << y << endl; swap(&x, &y); cout << "After swap: x = " << x << ", y = " << y << endl; return 0; } ``` 输出结果为: ``` Before swap: x = 1, y = 2 After swap: x = 2, y = 1 ``` 在调用 `swap` 函数时,需要传入指向变量 `x` 和 `y` 的指针 `&x` 和 `&y`,这样函数内部就可以通过指针操作来交换两个变量的值。 ### 回答2: C语言中的指针可以通过传递内存地址来实现对变量的修改。下面是一个使用指针作为参数的swap函数来交换两个整型变量的值的例子: ```c #include <stdio.h> // 定义swap函数 void swap(int *a, int *b) { int temp = *a; *a = *b; *b = temp; } int main() { int x = 10; int y = 20; printf("交换前:x = %d, y = %d\n", x, y); // 调用swap函数 swap(&x, &y); printf("交换后:x = %d, y = %d\n", x, y); return 0; } ``` 在主函数main中,首先初始化了两个整型变量x和y的值,然后调用swap函数来交换它们的值。swap函数的参数使用指针类型(int *a, int *b),这样在函数内部就可以通过指针来修改传递进来的变量的值。swap函数中,先用一个临时变量temp存储a指针指向的变量值,然后将a指针指向b指针指向的变量值,最后将b指针指向的变量值赋给a指针指向的变量。这样,就完成了两个整型变量的值的交换。最后,在主函数中输出交换后的值,结果为"交换后:x = 20, y = 10"。 ### 回答3: 下面是一个使用C语言编写的swap函数,可以在主函数中使用指针参数来交换两个整型变量的值: ```c #include <stdio.h> void swap(int* a, int* b) { int temp = *a; *a = *b; *b = temp; } int main() { int num1 = 10; int num2 = 20; printf("交换前的值:\n"); printf("num1 = %d\n", num1); printf("num2 = %d\n", num2); swap(&num1, &num2); printf("交换后的值:\n"); printf("num1 = %d\n", num1); printf("num2 = %d\n", num2); return 0; } ``` 这段代码定义了一个名为swap的函数,它有两个指针参数a和b。在函数内部,通过声明一个临时变量temp,将a指针指向的值与b指针指向的值交换。然后在主函数中,通过传递变量num1和num2的地址给swap函数,实现了两个整型变量的值交换。 在运行这段代码之后,输出结果为: ``` 交换前的值: num1 = 10 num2 = 20 交换后的值: num1 = 20 num2 = 10 ``` 所以,通过swap函数成功交换了主函数中两个整型变量的值。

相关推荐

最新推荐

recommend-type

使用C++调用Python代码的方法详解

使用C++调用Python代码的方法详解 本文将详细介绍使用C++调用Python代码的方法,并对.py和.pyc文件的区别进行解释。通过本文,读者可以了解如何使用C++语言调用Python代码,并掌握相关的配置和编程技巧。 一、配置...
recommend-type

DSP编程技巧之--从C/C++代码调用汇编代码中的函数与变量

3. 不要在内联汇编中直接修改C/C++变量。 4. 不使用汇编指示性指令。 5. 避免在调试模式(-debug:dwarf)下使用内联汇编定义宏。 最后,从C/C++中调用汇编代码中的变量。调用汇编全局变量类似于调用函数,需要先在...
recommend-type

linux的ubuntu上如何编译C和C++代码写的动态库,以及调用执行

在Linux的Ubuntu操作系统中,编译C和C++代码以创建动态库(即共享对象库,通常以`.so`结尾)以及调用这些库来执行程序是一个常见的需求。以下是一步步教你如何完成这个过程。 首先,我们需要准备源代码文件。在本例...
recommend-type

基于C#调用c++Dll结构体数组指针的问题详解

如果Dll文件中只包含一些基础类型,那这个问题可能可以被忽略,但是如果是组合类型(这个叫法也许不妥),如结构体、类类型等,在其中的成员变量的长度的申明正确与否将决定你对Dll文件调用的成败。 在C++中,...
recommend-type

Qt(C++)调用工业相机Basler的SDK使用示例

Qt(C++)调用工业相机Basler的SDK使用示例 Qt 是一个跨平台的应用开发框架,它提供了一个完整的开发环境,可以用于开发图形用户界面、网络通信、数据库集成等应用程序。 Basler 是一家专业的工业相机制造商,其...
recommend-type

十种常见电感线圈电感量计算公式详解

本文档详细介绍了十种常见的电感线圈电感量的计算方法,这对于开关电源电路设计和实验中的参数调整至关重要。计算方法涉及了圆截面直导线、同轴电缆线、双线制传输线、两平行直导线间的互感以及圆环的电感。以下是每种类型的电感计算公式及其适用条件: 1. **圆截面直导线的电感** - 公式:\( L = \frac{\mu_0 l}{2\pi r} \) (在 \( l >> r \) 的条件下) - \( l \) 表示导线长度,\( r \) 表示导线半径,\( \mu_0 \) 是真空导磁率。 2. **同轴电缆线的电感** - 公式:\( L = \frac{\mu_0 l}{2\pi (r1 + r2)} \) (忽略外导体厚度) - \( r1 \) 和 \( r2 \) 分别为内外导体直径。 3. **双线制传输线的电感** - 公式:\( L = \frac{\mu_0 l}{2\pi^2 D \ln(\frac{D+r}{r})} \) (条件:\( l >> D, D >> r \)) - \( D \) 是两导线间距离。 4. **两平行直导线的互感** - 公式:\( M = \frac{\mu_0 l}{2\pi r} \ln(\frac{D}{d}) \) (条件:\( D >> r \)) - \( d \) 是单个导线半径,互感与距离 \( D \) 有关。 5. **圆环的电感** - 公式:\( L = \mu_0 R \ln(\frac{R}{r}) \) - \( R \) 是圆环的外半径,\( r \) 是圆环截面的半径。 在电路设计中,计算这些电感值有助于确保电路性能的准确性和稳定性。值得注意的是,实际应用中还需要考虑线圈的形状、材料(包括磁芯的相对导磁率)和外部因素,如磁珠的影响。此外,这些公式通常是在理想化情况下给出的,实际应用中可能需要考虑非线性效应和频率依赖性。对于复杂线圈,可能需要借助于电磁场仿真软件进行精确计算。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【树结构遍历操作】:JavaScript深度优先与广度优先算法详解

![js+数据结构更改](https://www.freecodecamp.org/news/content/images/2021/04/JavaScript-splice-method.png) # 1. 树结构遍历操作概述 在计算机科学中,树结构是表示数据的一种重要方式,尤其在处理层次化数据时显得尤为重要。树结构遍历操作是树上的核心算法,它允许我们访问树中每一个节点一次。这种操作广泛应用于搜索、排序、以及各种优化问题中。本章将概览树结构遍历的基本概念、方法和实际应用场景。 ## 1.1 树结构的定义与特性 树是由一个集合作为节点和一组连接这些节点的边构成的图。在树结构中,有一个特殊
recommend-type

年份是否为闰年C语言判断

在C语言中,判断一个年份是否为闰年的标准有以下几个规则: 1. **普通闰年**:能被4整除但不能被100整除的年份是普通闰年,如2004年就是闰年。 2. **世纪闰年**:能被400整除的年份也是闰年,但如果是整百数(例如1900年),则需要满足能被400整除才能是闰年。 下面是简单的C语言函数来判断一个年份是否是闰年: ```c #include <stdbool.h> bool is_leap_year(int year) { if (year % 4 != 0) { // 如果不是4的倍数,则直接返回false return false; }
recommend-type

军用车辆:CAN总线的集成与优势

本文探讨了CAN总线在军用车辆中的应用,针对军用车辆电子系统的发展趋势和需求,着重分析了将CAN总线技术引入军用车辆的必要性和可行性。军用车辆的电子化程度日益提高,电子设备的集成和资源共享成为关键,以提升整体性能和作战效能。CAN总线(Controller Area Network)作为一种成功的民用汽车通信技术,因其模块化、标准化、小型化以及高效能的特点,被提出作为军用车辆的潜在解决方案。 首先,文章指出军用车辆的数据通信需求不同于一般计算机网络,它强调实时性、可靠性、短帧信息传输、频繁的信息交换以及高安全性。CAN总线正好满足这些特殊要求,它支持多主机通信模式,允许灵活的数据交换,并且具有固定的报文格式,这在满足军用车辆实时和高效的数据处理中具有优势。 对比了CAN总线与传统的军用通信标准1553B后,文中强调了CAN总线在可靠性方面的明显优势,尤其是在复杂环境和高负载情况下,其容错能力和故障自愈能力使其在军用车辆中的应用更具吸引力。此外,CAN总线的成本效益也是其在军用领域得到广泛应用的一个重要因素。 文章详细介绍了CAN总线的工作原理和特点,比如它的仲裁机制能够有效管理多个节点间的通信,避免冲突,同时其低数据速率适合于军用车辆的实时通信需求。在介绍完CAN总线的优势后,文章还可能探讨了实际应用中的挑战,如如何确保网络的安全性、如何进行有效的系统集成等问题,以及如何通过研发和优化来克服这些挑战。 本文通过对CAN总线特性的深入剖析,证明了将其应用于军用车辆是切实可行且具有重大意义的,为军用车辆电子系统的现代化和成本效益最大化提供了新的思路和技术路径。