给我一个输入8组数输出8组数的pytorch的transformer源码
时间: 2023-09-16 10:05:49 浏览: 167
### 回答1:
以下是一份简化的 PyTorch Transformer 的代码,可以输入 8 组数并输出 8 组数:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class Transformer(nn.Module):
def __init__(self, d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward):
super(Transformer, self).__init__()
self.encoder_layer = nn.TransformerEncoderLayer(d_model, nhead, dim_feedforward)
self.encoder = nn.TransformerEncoder(self.encoder_layer, num_encoder_layers)
self.decoder_layer = nn.TransformerDecoderLayer(d_model, nhead, dim_feedforward)
self.decoder = nn.TransformerDecoder(self.decoder_layer, num_decoder_layers)
self.fc = nn.Linear(d_model, 8)
def forward(self, src, tgt):
# src shape: (batch_size, sequence_length, 8)
# tgt shape: (batch_size, sequence_length, 8)
memory = self.encoder(src)
output = self.decoder(tgt, memory)
return self.fc(output)
d_model = 8
nhead = 2
num_encoder_layers = 2
num_decoder_layers = 2
dim_feedforward = 20
model = Transformer(d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward)
src = torch.randn(1, 8, 8)
tgt = torch.randn(1, 8, 8)
output = model(src, tgt)
print(output.shape) # torch.Size([1, 8, 8])
```
这是一份简化版代码,你可以根据你的具体需求进行修改和扩展。
### 回答2:
import torch
import torch.nn as nn
import torch.nn.functional as F
class Transformer(nn.Module):
def __init__(self):
super(Transformer, self).__init__()
self.embedding = nn.Embedding(num_embeddings=100, embedding_dim=256)
self.transformer = nn.Transformer(d_model=256, nhead=8, num_encoder_layers=6,
num_decoder_layers=6, dim_feedforward=1024,
dropout=0.1, activation='relu')
self.fc = nn.Linear(256, 100)
def forward(self, x):
x = self.embedding(x)
x = x.permute(1, 0, 2) # Transpose to (seq_len, batch_size, embedding_size)
mask = self.generate_square_subsequent_mask(x.size(0)).to(x.device)
x = self.transformer(x, x, tgt_mask=mask)
x = x.permute(1, 0, 2) # Transpose back to (batch_size, seq_len, embedding_size)
x = self.fc(x)
return x
def generate_square_subsequent_mask(self, sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
input_data = torch.randn(8, 10, dtype=torch.long) # 输入的8个样本,每个样本有10个数
model = Transformer()
output_data = model(input_data)
print(output_data.size()) # 输出为8组数,每组数有100个维度
阅读全文