static void lora_gpio_config(void){ GPIO_InitTypeDef GPIO_InitStructure; // GPIO 初始化 LORA_GPIO_APBxClkCmd(LORA_GPIO_CLK, ENABLE); GPIO_InitStructure.GPIO_Pin = LORA_M0_GPIO_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(LORA_M0_GPIO_PORT, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = LORA_M1_GPIO_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(LORA_M1_GPIO_PORT, &GPIO_InitStructure); }

时间: 2023-07-22 14:21:42 浏览: 70
这段代码是用来配置LORA模块的GPIO引脚的。具体来说,它使用了STM32的GPIO_InitTypeDef结构体来定义GPIO的配置参数,包括引脚号、工作模式和速度等。然后通过调用GPIO_Init函数来初始化GPIO引脚的配置。其中,LORA_GPIO_APBxClkCmd是用来使能GPIO的时钟,LORA_M0_GPIO_PIN和LORA_M1_GPIO_PIN是定义了LORA模块的M0和M1引脚号,LORA_M0_GPIO_PORT和LORA_M1_GPIO_PORT则是定义了M0和M1所在的GPIO端口号。 总之,这段代码是用来将LORA模块的M0和M1引脚配置为输出模式,以便后续的LORA模块操作使用。
相关问题

#define LORA_GPIO_CLK (RCC_APB2Periph_GPIOA) #define LORA_GPIO_APBxClkCmd RCC_APB2PeriphClockCmd

这段代码定义了两个宏。第一个宏LORA_GPIO_CLK用来定义LORA模块所在的GPIO端口所对应的时钟,这里定义为RCC_APB2Periph_GPIOA,表示LORA模块所在的GPIO端口为GPIOA。第二个宏LORA_GPIO_APBxClkCmd用来定义打开或关闭LORA模块所在GPIO端口时钟的命令,这里定义为RCC_APB2PeriphClockCmd,表示使用STM32的外设时钟控制寄存器来控制GPIOA的时钟。具体来说,调用LORA_GPIO_APBxClkCmd(LORA_GPIO_CLK, ENABLE)可以打开GPIOA的时钟,调用LORA_GPIO_APBxClkCmd(LORA_GPIO_CLK, DISABLE)可以关闭GPIOA的时钟。

lora_pkt_fwd

lora_pkt_fwd是一个LoRaWAN数据包转发程序,用于将LoRaWAN设备(如传感器或节点)的数据包转发到LoRa网关,并进一步传输到网络服务器。它处理物理层和数据链路层的通信,实现了数据包的接收和发送功能。 lora_pkt_fwd的主要功能包括: 1. 接收功能:lora_pkt_fwd负责接收来自LoRaWAN设备的数据包。它监听指定的频率和数据速率,等待设备发送数据。一旦接收到数据包,它将对其进行解码,并提取出有效负载数据。 2. 发送功能:lora_pkt_fwd可将解码后的数据包转发到已配置的LoRa网关。它通过与网关建立连接发送数据包,然后等待网关将数据包发送到网络服务器。通过此过程,它实现了从设备到网络服务器的数据传输。 3. 协议支持:lora_pkt_fwd支持多种LoRaWAN协议版本,如LoRaWAN 1.0.2和LoRaWAN 1.1。它能够根据所需的协议配置自身的行为,以便与所连接的设备和网络兼容。 4. 配置管理:lora_pkt_fwd提供了可编辑的配置文件,可以根据需要自定义参数。用户可以配置通信频率、数据速率、网络服务器地址和端口等信息。这使得它可以适应不同的LoRa网关和网络环境。 总而言之,lora_pkt_fwd是一个功能强大的LoRaWAN数据包转发程序,能够接收、解码和发送数据包,从设备到网络服务器进行可靠的数据传输。它提供了灵活的配置选项,以适应各种LoRaWAN协议和网络设置。

相关推荐

Build started: Project: template *** Using Compiler 'V6.19', folder: 'D:\Keil_v5\ARM\ARMCLANG\Bin' Build target 'Target 1' ../User/main.c(2): error: 'lora.h' file not found #include "lora.h" ^~~~~~~~ 1 error generated. compiling main.c... LoRa.c(8): error: use of undeclared identifier 'RCU_AF' rcu_periph_clock_enable(RCU_AF); ^ LoRa.c(9): error: call to undeclared function 'gpio_init'; ISO C99 and later do not support implicit function declarations [-Wimplicit-function-declaration] gpio_init(LORA_UART_GPIO, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, LORA_UART_GPIO_PIN_TX); ^ LoRa.c(9): error: use of undeclared identifier 'GPIO_MODE_AF_PP' gpio_init(LORA_UART_GPIO, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, LORA_UART_GPIO_PIN_TX); ^ LoRa.c(10): error: use of undeclared identifier 'GPIO_MODE_IN_FLOATING' gpio_init(LORA_UART_GPIO, GPIO_MODE_IN_FLOATING, GPIO_OSPEED_50MHZ, LORA_UART_GPIO_PIN_RX); ^ LoRa.c(23): error: use of undeclared identifier 'GPIO_MODE_IPU' gpio_init(LORA_AUX_GPIO, GPIO_MODE_IPU, GPIO_OSPEED_50MHZ, LORA_AUX_GPIO_PIN); ^ 5 errors generated. compiling LoRa.c... Usart.c(8): error: use of undeclared identifier 'RCU_AF' rcu_periph_clock_enable(RCU_AF); ^ Usart.c(9): error: call to undeclared function 'gpio_init'; ISO C99 and later do not support implicit function declarations [-Wimplicit-function-declaration] gpio_init(USART_UART_GPIO, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, USART_UART_GPIO_PIN_TX); ^ Usart.c(9): error: use of undeclared identifier 'GPIO_MODE_AF_PP' gpio_init(USART_UART_GPIO, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, USART_UART_GPIO_PIN_TX); ^ Usart.c(10): error: use of undeclared identifier 'GPIO_MODE_IN_FLOATING' gpio_init(USART_UART_GPIO, GPIO_MODE_IN_FLOATING, GPIO_OSPEED_50MHZ, USART_UART_GPIO_PIN_RX); ^ 4 errors generated. compiling Usart.c... ".\Objects\template.axf" - 10 Error(s), 0 Warning(s). Target not created. Build Time Elapsed: 00:00:01

arm-none-eabi-gcc -o "SENSOR_CB.elf" @"objects.list" -mcpu=cortex-m3 -T"C:\Users\WangBingqian\Desktop\SC10L151Cube\trunk\NO_FOTA_VERSION\STM32L151CBTXA_FLASH.ld" --specs=nosys.specs -Wl,-Map="SENSOR_CB.map" -Wl,--gc-sections -static --specs=nano.specs -mfloat-abi=soft -mthumb -Wl,--start-group -lc -lm -Wl,--end-group Core/Src/rs485.o: In function get_sample_data_max_min_value': rs485.c:(.text.get_sample_data_max_min_value+0x0): multiple definition of get_sample_data_max_min_value' Core/Src/lora_wan.o:lora_wan.c:(.text.get_sample_data_max_min_value+0x0): first defined here Core/Src/rs485.o: In function computeMvScale': rs485.c:(.text.computeMvScale+0x0): multiple definition of computeMvScale' Core/Src/lora_wan.o:lora_wan.c:(.text.computeMvScale+0x0): first defined here Core/Src/rs485.o: In function computeMvScale_f': rs485.c:(.text.computeMvScale_f+0x0): multiple definition of computeMvScale_f' Core/Src/lora_wan.o:lora_wan.c:(.text.computeMvScale_f+0x0): first defined here Core/Src/rs485.o: In function generate_frag_data': rs485.c:(.text.generate_frag_data+0x0): multiple definition of generate_frag_data' Core/Src/lora_wan.o:lora_wan.c:(.text.generate_frag_data+0x0): first defined here Core/Src/rs485.o:(.bss.frag_num+0x0): multiple definition of frag_num' Core/Src/lora_wan.o:(.bss.frag_num+0x0): first defined here collect2.exe: error: ld returned 1 exit status make: *** [makefile:50: SENSOR_CB.elf] Error 1 "make -j4 all" terminated with exit code 2. Build might be incomplete.是什么错误

最新推荐

recommend-type

LORA、蓝牙、Zigbee对比.docx

通过表格对比,给出了LORA、蓝牙、Zigbee三种无线通信技术的差异对比
recommend-type

LoRa开发与应用二:无线收发数据

LoRa-IoT开发板一、测试准备1.1 开发板焊接1.2 工具准备1.3 串口助手参数配置二、配置设备2.1 开发板测试2.2 配置设备工作模式三、收发数据及模式切换3.1 收发数据3.2 更改参数3.3 模式切换四、测试总结 一、测试...
recommend-type

LoRa 信噪比和接收灵敏度.pdf

LORA/LORAWAN 官方培训手册,主要介绍最小信噪比概念和接收灵敏度的计算方式;
recommend-type

LoRa低功耗无线网络简介.pdf

LoRa低功耗无线网络简介 LoRa低功耗无线网络是一种为小数据采集应用而设计的低功耗无线网络,典型应用为水气表无线抄表等。LoRaNet 网络由一个集中器、少量路由、大量终端构成,主要特性包括使用 LoRa 扩频调制、自...
recommend-type

ST-LoRa AT指令.pdf

这是一个对LORA模块通过AT指令进行操作的官方文档。想进行LORA编程的可以下载了学习一下。 Lora™ is a proprietary spread spectrum modulation scheme, trading data rate against sensitivity.
recommend-type

基于单片机的瓦斯监控系统硬件设计.doc

"基于单片机的瓦斯监控系统硬件设计" 在煤矿安全生产中,瓦斯监控系统扮演着至关重要的角色,因为瓦斯是煤矿井下常见的有害气体,高浓度的瓦斯不仅会降低氧气含量,还可能引发爆炸事故。基于单片机的瓦斯监控系统是一种现代化的监测手段,它能够实时监测瓦斯浓度并及时发出预警,保障井下作业人员的生命安全。 本设计主要围绕以下几个关键知识点展开: 1. **单片机技术**:单片机(Microcontroller Unit,MCU)是系统的核心,它集成了CPU、内存、定时器/计数器、I/O接口等多种功能,通过编程实现对整个系统的控制。在瓦斯监控器中,单片机用于采集数据、处理信息、控制报警系统以及与其他模块通信。 2. **瓦斯气体检测**:系统采用了气敏传感器来检测瓦斯气体的浓度。气敏传感器是一种对特定气体敏感的元件,它可以将气体浓度转换为电信号,供单片机处理。在本设计中,选择合适的气敏传感器至关重要,因为它直接影响到检测的精度和响应速度。 3. **模块化设计**:为了便于系统维护和升级,单片机被设计成模块化结构。每个功能模块(如传感器接口、报警系统、电源管理等)都独立运行,通过单片机进行协调。这种设计使得系统更具有灵活性和扩展性。 4. **报警系统**:当瓦斯浓度达到预设的危险值时,系统会自动触发报警装置,通常包括声音和灯光信号,以提醒井下工作人员迅速撤离。报警阈值可根据实际需求进行设置,并且系统应具有一定的防误报能力。 5. **便携性和安全性**:考虑到井下环境,系统设计需要注重便携性,体积小巧,易于携带。同时,系统的外壳和内部电路设计必须符合矿井的安全标准,能抵抗井下潮湿、高温和电磁干扰。 6. **用户交互**:系统提供了灵敏度调节和检测强度调节功能,使得操作员可以根据井下环境变化进行参数调整,确保监控的准确性和可靠性。 7. **电源管理**:由于井下电源条件有限,瓦斯监控系统需具备高效的电源管理,可能包括电池供电和节能模式,确保系统长时间稳定工作。 通过以上设计,基于单片机的瓦斯监控系统实现了对井下瓦斯浓度的实时监测和智能报警,提升了煤矿安全生产的自动化水平。在实际应用中,还需要结合软件部分,例如数据采集、存储和传输,以实现远程监控和数据分析,进一步提高系统的综合性能。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:Python环境变量配置从入门到精通:Win10系统下Python环境变量配置完全手册

![:Python环境变量配置从入门到精通:Win10系统下Python环境变量配置完全手册](https://img-blog.csdnimg.cn/20190105170857127.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzI3Mjc2OTUx,size_16,color_FFFFFF,t_70) # 1. Python环境变量简介** Python环境变量是存储在操作系统中的特殊变量,用于配置Python解释器和
recommend-type

electron桌面壁纸功能

Electron是一个开源框架,用于构建跨平台的桌面应用程序,它基于Chromium浏览器引擎和Node.js运行时。在Electron中,你可以很容易地处理桌面环境的各个方面,包括设置壁纸。为了实现桌面壁纸的功能,你可以利用Electron提供的API,如`BrowserWindow` API,它允许你在窗口上设置背景图片。 以下是一个简单的步骤概述: 1. 导入必要的模块: ```javascript const { app, BrowserWindow } = require('electron'); ``` 2. 在窗口初始化时设置壁纸: ```javas
recommend-type

基于单片机的流量检测系统的设计_机电一体化毕业设计.doc

"基于单片机的流量检测系统设计文档主要涵盖了从系统设计背景、硬件电路设计、软件设计到实际的焊接与调试等全过程。该系统利用单片机技术,结合流量传感器,实现对流体流量的精确测量,尤其适用于工业过程控制中的气体流量检测。" 1. **流量检测系统背景** 流量是指单位时间内流过某一截面的流体体积或质量,分为瞬时流量(体积流量或质量流量)和累积流量。流量测量在热电、石化、食品等多个领域至关重要,是过程控制四大参数之一,对确保生产效率和安全性起到关键作用。自托里拆利的差压式流量计以来,流量测量技术不断发展,18、19世纪出现了多种流量测量仪表的初步形态。 2. **硬件电路设计** - **总体方案设计**:系统以单片机为核心,配合流量传感器,设计显示单元和报警单元,构建一个完整的流量检测与监控系统。 - **工作原理**:单片机接收来自流量传感器的脉冲信号,处理后转化为流体流量数据,同时监测气体的压力和温度等参数。 - **单元电路设计** - **单片机最小系统**:提供系统运行所需的电源、时钟和复位电路。 - **显示单元**:负责将处理后的数据以可视化方式展示,可能采用液晶显示屏或七段数码管等。 - **流量传感器**:如涡街流量传感器或电磁流量传感器,用于捕捉流量变化并转换为电信号。 - **总体电路**:整合所有单元电路,形成完整的硬件设计方案。 3. **软件设计** - **软件端口定义**:分配单片机的输入/输出端口,用于与硬件交互。 - **程序流程**:包括主程序、显示程序和报警程序,通过流程图详细描述了每个程序的执行逻辑。 - **软件调试**:通过调试工具和方法确保程序的正确性和稳定性。 4. **硬件电路焊接与调试** - **焊接方法与注意事项**:强调焊接技巧和安全事项,确保电路连接的可靠性。 - **电路焊接与装配**:详细步骤指导如何组装电路板和连接各个部件。 - **电路调试**:使用仪器设备检查电路性能,排除故障,验证系统功能。 5. **系统应用与意义** 随着技术进步,单片机技术、传感器技术和微电子技术的结合使得流量检测系统具备更高的精度和可靠性,对于优化工业生产过程、节约资源和提升经济效益有着显著作用。 6. **结论与致谢** 文档结尾部分总结了设计成果,对参与项目的人表示感谢,并可能列出参考文献以供进一步研究。 7. **附录** 包含程序清单和电路总图,提供了具体实现细节和设计蓝图。 此设计文档为一个完整的机电一体化毕业设计项目,详细介绍了基于单片机的流量检测系统从概念到实施的全过程,对于学习单片机应用和流量测量技术的读者具有很高的参考价值。