from sklearn.metrics import auc,roc_curve def evaluation_class(model, x_test, y_test): prediction = model.predict_proba(x_test) preds = model.predict_proba(x_test)[:, 1] fpr,tpr,threshold = roc_curve(y_test,preds) roc_auc = auc(fpr,tpr) plt.title('ROC Curve') plt.plot(fpr,tpr,'g',label = 'AUC = %0.3f' % roc_auc) plt.legend(loc = 'lower right') plt.plot([0,1],[0,1],'r--') plt.xlim([0,1]) plt.ylim([0,1]) plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate') plt.show() print('ROC AUC score:', round(roc_auc, 4)) from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import StandardScaler from sklearn import svm x_train = StandardScaler().fit_transform(x_train) x_test = StandardScaler().fit_transform(x_test) lr = LogisticRegression() lr.fit(x_train,y_train) evaluation_class(lr,x_test,y_test) rf=RandomForestClassifier(max_depth=2,random_state=0) rf.fit(x_train,y_train) evaluation_class(rf,x_test,y_test) sm = svm.SVC(gamma='scale',C=1.0,decision_function_shape='ovr',kernel='rbf',probability=True) sm.fit(x_train,y_train) evaluation_class(sm,x_test,y_test)
时间: 2024-04-05 08:33:57 浏览: 150
这是一个Python代码片段,用于评估分类模型的性能,并使用三种不同的分类算法(逻辑回归、随机森林和支持向量机)进行训练和测试。具体来说,代码定义了一个evaluation_class函数,用于计算和绘制ROC曲线,并输出ROC AUC得分。然后,代码使用sklearn库中的StandardScaler函数,对训练集和测试集进行标准化处理。接下来,代码使用sklearn库中的LogisticRegression、RandomForestClassifier和svm.SVC函数,分别训练三种不同的分类算法,并使用evaluation_class函数对每个模型进行评估。
在evaluation_class函数中,代码使用模型的predict_proba函数,对测试集进行预测,并计算ROC曲线的FPR和TPR。然后,代码使用sklearn库中的auc函数,计算ROC曲线下的面积,并将ROC曲线和AUC值绘制在图表上。最后,代码输出ROC AUC得分。
总体来说,这段代码用于比较不同的分类算法在给定数据集上的性能表现,通过计算ROC AUC曲线和得分,评估模型的分类准确度和稳定性。
相关问题
Sklearn.metrics.roc_auc_score模块中的源代码
以下是sklearn.metrics.roc_auc_score模块的源代码:
```python
def roc_auc_score(y_true, y_score, average='macro', sample_weight=None,
max_fpr=None, multi_class='raise', labels=None):
"""Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC)
from prediction scores.
Note: this implementation can be used with binary, multiclass and
multilabel classification, but some restrictions apply (see Parameters).
Read more in the :ref:`User Guide <roc_metrics>`.
Parameters
----------
y_true : array-like of shape (n_samples,) or (n_samples, n_classes)
True labels or binary label indicators. The binary and multiclass cases
expect labels with shape (n_samples,) while the multilabel case expects
binary label indicators with shape (n_samples, n_classes).
y_score : array-like of shape (n_samples,) or (n_samples, n_classes)
Target scores. In the binary and multilabel cases, these can be either
probability estimates or non-thresholded decision values (as returned
by `decision_function` on some classifiers). In the multiclass case,
these must be probability estimates which sum to 1. The binary case
expects a shape (n_samples,), and the scores must be the scores of
the class with the greater label. The multiclass and multilabel
cases expect a shape (n_samples, n_classes).
average : {'micro', 'macro', 'samples', 'weighted'} or None, \
default='macro'
If ``None``, the scores for each class are returned. Otherwise,
this determines the type of averaging performed on the data:
``'micro'``:
Calculate metrics globally by counting the total true positives,
false negatives and false positives.
``'macro'``:
Calculate metrics for each label, and find their unweighted
mean. This does not take label imbalance into account.
``'weighted'``:
Calculate metrics for each label, and find their average, weighted
by support (the number of true instances for each label). This
alters 'macro' to account for label imbalance; it can result in an
F-score that is not between precision and recall.
``'samples'``:
Calculate metrics for each instance, and find their average
(only meaningful for multilabel classification).
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
max_fpr : float or None, default=None
If not ``None``, the standardized partial AUC [2]_ over the range
[0, max_fpr] is returned. For the multiclass case, ``max_fpr``
should be either ``None`` or ``1.0`` as partial AUC makes
sense for binary classification only.
multi_class : {'raise', 'ovr', 'ovo'}, default='raise'
Multiclass only. Determines the type of configuration to use.
The default value raises an error, so either ``'ovr'`` or
``'ovo'`` must be passed explicitly.
``'ovr'``:
Computes ROC curve independently for each class. For each class,
the binary problem y_true == i or not is solved and the
corresponding ROC curve is computed and averaged across
classes. This is a commonly used strategy for multiclass
or multi-label classification problems.
``'ovo'``:
Computes pairwise ROC curve for each pair of classes. For each
pair of classes, the binary problem y_true == i or y_true == j
is solved and the corresponding ROC curve is computed. The
micro-averaged ROC curve is computed from the individual curves
and hence is agnostic to the class balance.
labels : array-like of shape (n_classes,), default=None
Multiclass only. List of labels to index ``y_score`` used for
multiclass. If ``None``, the lexical order of ``y_true`` is used to
index ``y_score``.
Returns
-------
auc : float or dict (if ``multi_class`` is ``'ovo'`` or ``'ovr'``)
AUC of the ROC curves.
If ``multi_class`` is ``'ovr'``, then returns an array of shape
``(n_classes,)`` such that each element corresponds to the AUC of
the ROC curve for a specific class.
If ``multi_class`` is ``'ovo'``, then returns a dict where the keys
are ``(i, j)`` tuples and the values are the AUCs of the ROC curve
for the binary problem of predicting class ``i`` vs. class ``j``.
See also
--------
roc_curve : Compute Receiver operating characteristic (ROC) curve.
roc_auc : Compute Area Under the Receiver Operating Characteristic Curve
(ROC AUC) from prediction scores
Examples
--------
>>> import numpy as np
>>> from sklearn.metrics import roc_auc_score
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> roc_auc_score(y_true, y_scores)
0.75
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([[0.1, 0.9], [0.4, 0.6], [0.35, 0.65], [0.8, 0.2]])
>>> roc_auc_score(y_true, y_scores, multi_class='ovo')
0.6666666666666667
>>> roc_auc_score(y_true, y_scores[:, 1])
0.75
"""
# validation of the input y_score
if not (y_true.shape == y_score.shape):
raise ValueError("y_true and y_score have different shape.")
if (not is_multilabel(y_true) and not is_multiclass(y_true)):
# roc_auc_score only supports binary and multiclass classification
# for the time being
if len(np.unique(y_true)) == 2:
# Only one class present in y_true. ROC AUC score is not defined
# in that case. Note that raising an error is consistent with the
# deprecated roc_auc_score behavior.
raise ValueError(
"ROC AUC score is not defined in that case: "
"y_true contains only one label ({0}).".format(
format_label(y_true[0])
)
)
else:
raise ValueError(
"ROC AUC score is not defined in that case: "
"y_true has {0} unique labels. ".format(len(np.unique(y_true))) +
"ROC AUC score is defined only for binary or multiclass "
"classification where the number of classes is greater than "
"one."
)
if multi_class == 'raise':
raise ValueError("multi_class must be in ('ovo', 'ovr')")
elif multi_class == 'ovo':
if is_multilabel(y_true):
# check if max_fpr is valid in this case
if max_fpr is not None and (max_fpr == 0 or max_fpr > 1):
raise ValueError("Expected max_fpr in range (0, 1], got: %f" %
max_fpr)
return _multiclass_roc_auc_score_ovr(y_true, y_score,
average, sample_weight,
max_fpr=max_fpr)
else:
return _binary_roc_auc_score(y_true, y_score, average,
sample_weight, max_fpr=max_fpr)
elif multi_class == 'ovr':
if is_multilabel(y_true):
return _multilabel_roc_auc_score_ovr(y_true, y_score,
average, sample_weight)
else:
return _multiclass_roc_auc_score_ovr(y_true, y_score,
average, sample_weight,
labels=labels)
else:
raise ValueError("Invalid multi_class parameter: {0}".format(multi_class))
```
这段代码实现了计算ROC AUC的功能,支持二元、多类和多标签分类。其中,分为'ovo'和'ovr'两种多类模式,'ovo'表示一对一,'ovr'表示一对多。
import networkx as nxfrom sklearn.model_selection import train_test_splitfrom networkx.algorithms.link_prediction import katz_similarityfrom sklearn.metrics import roc_auc_score, average_precision_score# 加载数据集edges = []with open("email-Eu-core.txt") as f: for line in f: if line.startswith("#"): continue edge = line.strip().split() edges.append((int(edge[0]), int(edge[1])))# 划分训练集和测试集train_edges, test_edges = train_test_split(edges, test_size=0.1, random_state=42)# 构建无向图graph = nx.Graph()graph.add_edges_from(train_edges)# 计算相似度katz_scores = katz_similarity(graph, max_l=200, beta=0.01)# 计算AUC值y_true = [1 if edge in test_edges else 0 for edge in graph.edges()]y_scores = [katz_scores[edge] for edge in graph.edges()]auc = roc_auc_score(y_true, y_scores)# 计算Precisionk = 100top_k_edges = sorted(graph.edges(), key=lambda x: katz_scores[x], reverse=True)[:k]y_true = [1 if edge in test_edges else 0 for edge in top_k_edges]y_scores = [katz_scores[edge] for edge in top_k_edges]precision = average_precision_score(y_true, y_scores)print("Katz Algorithm")print("AUC: {:.4f}".format(auc))print("Precision@{}: {:.4f}".format(k, precision))有什么问题
这段代码中有一个语法错误,即第一行的 import 语句中没有正确地使用换行符。应该在 `import networkx as nx` 后添加一个换行符。
另外,代码中的 katz_similarity() 函数调用中使用了一个 max_l 参数,这个参数是不必要的,可以直接去掉,因为该函数不支持传递该参数。
最后,代码未定义变量 k,所以在计算 Precision 时会出错。您应该在代码开头定义一个 k 变量,或者将 k 的值硬编码到代码中。
下面是修改后的代码:
```python
import networkx as nx
from sklearn.model_selection import train_test_split
from networkx.algorithms.link_prediction import katz_similarity
from sklearn.metrics import roc_auc_score, average_precision_score
# 加载数据集
edges = []
with open("email-Eu-core.txt") as f:
for line in f:
if line.startswith("#"):
continue
edge = line.strip().split()
edges.append((int(edge[0]), int(edge[1])))
# 划分训练集和测试集
train_edges, test_edges = train_test_split(edges, test_size=0.1, random_state=42)
# 构建无向图
graph = nx.Graph()
graph.add_edges_from(train_edges)
# 计算相似度
katz_scores = katz_similarity(graph, beta=0.01)
# 计算AUC值
y_true = [1 if edge in test_edges else 0 for edge in graph.edges()]
y_scores = [katz_scores[edge] for edge in graph.edges()]
auc = roc_auc_score(y_true, y_scores)
# 计算Precision
k = 100
top_k_edges = sorted(graph.edges(), key=lambda x: katz_scores[x], reverse=True)[:k]
y_true = [1 if edge in test_edges else 0 for edge in top_k_edges]
y_scores = [katz_scores[edge] for edge in top_k_edges]
precision = average_precision_score(y_true, y_scores)
print("Katz Algorithm")
print("AUC: {:.4f}".format(auc))
print("Precision@{}: {:.4f}".format(k, precision))
```
请注意,这段代码依赖于 `email-Eu-core.txt` 数据集文件,您需要确保该文件存在并且与代码在同一目录下。
阅读全文