有ground_truth, prediction,帮我写一个计算AUC,ACC,recall,precision的pytorch方法
时间: 2024-01-19 21:02:55 浏览: 122
好的,以下是一个计算AUC、ACC、recall和precision的PyTorch方法:
```
import torch
def auc_acc_recall_precision(gt, pred):
# gt和pred都是PyTorch张量,大小为[batch_size, num_classes]
# 其中,gt是真实标签,pred是模型预测
# 需要将它们转换为一维张量,大小为[batch_size * num_classes]
gt = gt.view(-1)
pred = pred.view(-1)
# 计算AUC
fpr, tpr, _ = sklearn.metrics.roc_curve(gt.cpu().numpy(), pred.cpu().numpy())
auc = sklearn.metrics.auc(fpr, tpr)
# 计算ACC
threshold = 0.5
binary_pred = (pred >= threshold).float()
correct = torch.sum(binary_pred == gt).item()
total = gt.numel()
acc = correct / total
# 计算recall和precision
binary_pred = binary_pred.view(-1)
tp = torch.sum((binary_pred == 1) & (gt == 1)).item()
fn = torch.sum((binary_pred == 0) & (gt == 1)).item()
fp = torch.sum((binary_pred == 1) & (gt == 0)).item()
tn = torch.sum((binary_pred == 0) & (gt == 0)).item()
recall = tp / (tp + fn)
precision = tp / (tp + fp)
return auc, acc, recall, precision
```
注意,这个方法假设gt和pred是二分类问题,因此计算ACC、recall和precision时使用了一个阈值0.5。对于多分类问题,您可能需要修改代码。
阅读全文