def __init__(self): super(MyCNN,self).__init__() self.conv0 = nn.Conv2D(in_channels= 3,out_channels=64, kernel_size=3,stride=1) #output size=222 self.pool0 = nn.MaxPool2D(kernel_size=2,stride=2) #output size=111 self.conv1 = nn.Conv2D(in_channels = 64,out_channels=128,kernel_size=4,stride = 1) #output size=108 self.pool1 = nn.MaxPool2D(kernel_size=2,stride=2) #output size=54 self.conv2 = nn.Conv2D(in_channels= 128,out_channels=50,kernel_size=5) #output size=50 self.pool2 = nn.MaxPool2D(kernel_size=2,stride=2) #output size=25 self.fc1 = nn.Linear(in_features=50*25*25,out_features=25)
时间: 2024-04-27 17:24:43 浏览: 187
这是一个使用PyTorch实现的CNN模型的构造函数。在构造函数中定义了卷积层、池化层和全连接层。其中,conv0、pool0、conv1、pool1、conv2、pool2是卷积层和池化层的实例化对象,分别表示三个卷积层和三个池化层,用于提取输入图像的特征。fc1是全连接层的实例化对象,用于将卷积层提取的特征映射到输出类别上。其中,in_features表示输入特征数,out_features表示输出特征数。
相关问题
class ACmix(nn.Module): def __init__(self, in_planes, out_planes, kernel_att=7, head=4, kernel_conv=3, stride=1, dilation=1): super(ACmix, self).__init__() self.in_planes = in_planes self.out_planes = out_planes self.head = head self.kernel_att = kernel_att self.kernel_conv = kernel_conv self.stride = stride self.dilation = dilation self.rate1 = torch.nn.Parameter(torch.Tensor(1)) self.rate2 = torch.nn.Parameter(torch.Tensor(1)) self.head_dim = self.out_planes // self.head self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=1) self.conv2 = nn.Conv2d(in_planes, out_planes, kernel_size=1) self.conv3 = nn.Conv2d(in_planes, out_planes, kernel_size=1) self.conv_p = nn.Conv2d(2, self.head_dim, kernel_size=1) self.padding_att = (self.dilation * (self.kernel_att - 1) + 1) // 2 self.pad_att = torch.nn.ReflectionPad2d(self.padding_att) self.unfold = nn.Unfold(kernel_size=self.kernel_att, padding=0, stride=self.stride) self.softmax = torch.nn.Softmax(dim=1) self.fc = nn.Conv2d(3 * self.head, self.kernel_conv * self.kernel_conv, kernel_size=1, bias=False) self.dep_conv = nn.Conv2d(self.kernel_conv * self.kernel_conv * self.head_dim, out_planes, kernel_size=self.kernel_conv, bias=True, groups=self.head_dim, padding=1, stride=stride) self.reset_parameters()逐行解释代码
这段代码是定义了一个名为ACmix的类,继承自PyTorch中的nn.Module。它包含了一些卷积、全连接、非线性激活函数等层,用于实现图像处理任务中的注意力机制和特征融合。
具体来说,逐行解释代码如下:
```
class ACmix(nn.Module):
def __init__(self, in_planes, out_planes, kernel_att=7, head=4, kernel_conv=3, stride=1, dilation=1):
super(ACmix, self).__init__()
```
定义ACmix类,其中包含了初始化函数__init__()。其中in_planes表示输入特征图的通道数,out_planes表示输出特征图的通道数,kernel_att表示注意力机制的卷积核大小,head表示注意力机制的头数,kernel_conv表示特征融合的卷积核大小,stride表示卷积的步长,dilation表示卷积的膨胀率。
```
self.in_planes = in_planes
self.out_planes = out_planes
self.head = head
self.kernel_att = kernel_att
self.kernel_conv = kernel_conv
self.stride = stride
self.dilation = dilation
self.rate1 = torch.nn.Parameter(torch.Tensor(1))
self.rate2 = torch.nn.Parameter(torch.Tensor(1))
self.head_dim = self.out_planes // self.head
```
将输入的参数保存到类的成员变量中,其中rate1和rate2是需要学习的参数,用于调整注意力机制中的权重。
```
self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=1)
self.conv2 = nn.Conv2d(in_planes, out_planes, kernel_size=1)
self.conv3 = nn.Conv2d(in_planes, out_planes, kernel_size=1)
```
定义三个卷积层,其中conv1和conv2用于计算注意力机制,conv3用于特征融合。
```
self.conv_p = nn.Conv2d(2, self.head_dim, kernel_size=1)
```
定义一个卷积层,用于将注意力机制中的特征图转换为头数的通道数。
```
self.padding_att = (self.dilation * (self.kernel_att - 1) + 1) // 2
self.pad_att = torch.nn.ReflectionPad2d(self.padding_att)
self.unfold = nn.Unfold(kernel_size=self.kernel_att, padding=0, stride=self.stride)
self.softmax = torch.nn.Softmax(dim=1)
```
定义一些辅助层,其中padding_att表示注意力机制的填充大小,pad_att表示进行反射填充的层,unfold表示对特征图进行展开的层,softmax表示对展开后的特征图进行softmax操作的层。
```
self.fc = nn.Conv2d(3 * self.head, self.kernel_conv * self.kernel_conv, kernel_size=1, bias=False)
self.dep_conv = nn.Conv2d(self.kernel_conv * self.kernel_conv * self.head_dim, out_planes,
kernel_size=self.kernel_conv, bias=True, groups=self.head_dim, padding=1,
stride=stride)
```
定义特征融合的卷积层和深度可分离卷积层,其中fc层用于将展开后的特征图进行特征融合,dep_conv层用于将融合后的特征图进行输出。
```
self.reset_parameters()
```
初始化模型参数。
class AttU_Net(nn.Module): def __init__(self, img_ch=3, output_ch=1): super(AttU_Net, self).__init__() self.Maxpool = nn.MaxPool2d(kernel_size=2, stride=2) self.Conv1 = conv_block(ch_in=img_ch, ch_out=64) self.Conv2 = conv_block(ch_in=64, ch_out=128) self.Conv3 = conv_block(ch_in=128, ch_out=256) self.Conv4 = conv_block(ch_in=256, ch_out=512) self.Conv5 = conv_block(ch_in=512, ch_out=1024) self.Up5 = up_conv(ch_in=1024, ch_out=512) self.Att5 = Attention_block(F_g=512, F_l=512, F_int=256) self.Up_conv5 = conv_block(ch_in=1024, ch_out=512) self.Up4 = up_conv(ch_in=512, ch_out=256) self.Att4 = Attention_block(F_g=256, F_l=256, F_int=128) self.Up_conv4 = conv_block(ch_in=512, ch_out=256) self.Up3 = up_conv(ch_in=256, ch_out=128) self.Att3 = Attention_block(F_g=128, F_l=128, F_int=64) self.Up_conv3 = conv_block(ch_in=256, ch_out=128) self.Up2 = up_conv(ch_in=128, ch_out=64) self.Att2 = Attention_block(F_g=64, F_l=64, F_int=32) self.Up_conv2 = conv_block(ch_in=128, ch_out=64) self.Conv_1x1 = nn.Conv2d(64, output_ch, kernel_size=1, stride=1, padding=0) self.sigmoid = nn.Sigmoid()
这段代码定义了一个名为AttU_Net的PyTorch模型。它是一个基于U-Net的改进模型,用于图像分割任务。模型的输入通道数为img_ch,输出通道数为output_ch。
在初始化函数中,首先定义了一个MaxPool2d层,用于下采样操作。
接下来,通过conv_block函数定义了五个卷积块(self.Conv1到self.Conv5),每个卷积块包含一个卷积层和批归一化层。
然后,定义了四个上采样操作(self.Up5到self.Up2),每个上采样操作包含一个上采样层和一个卷积块。
在每个上采样操作后,使用Attention_block模块(self.Att5到self.Att2)对特征图进行注意力计算。
最后,通过一个1x1的卷积层(self.Conv_1x1)将通道数变为output_ch,并使用Sigmoid函数进行输出。
这个AttU_Net模型的设计主要是在U-Net的基础上添加了注意力机制,以提升分割性能。
阅读全文