class LeNet5(paddle.nn.Layer): def __init__(self): super(LeNet5, self).__init__() self.conv1=paddle.nn.Conv2D(in_channels=1,out_channel=6,kernel_size=5) self.avgpool1=paddle.nn.AvPool2D(kernel_size=2,stride=2) self.conv2=paddle.nn.Conv2D(in_channels=6,out_channels=16,kernel_size=5) self.avgpool2=paddle.nn.AvPool2D(kernel_size=2,stride=2) self.flatten=paddle.nn.Flatten() self.fc1 = paddle.nn.Linear(in_features=400,out_features=120) self.fc2 = paddle.nn.Linear(in_features=120,out_features=84) self.fc3 = paddle.nn.Linear(in_features=84, out_features=10)在pytorch中如何表示
时间: 2024-02-27 13:55:23 浏览: 463
pytorch nn.Conv2d()中的padding以及输出大小方式
5星 · 资源好评率100%
在 PyTorch 中,可以使用以下代码表示该 LeNet5 模型:
```
import torch.nn as nn
class LeNet5(nn.Module):
def __init__(self):
super(LeNet5, self).__init__()
self.conv1=nn.Conv2d(in_channels=1,out_channels=6,kernel_size=5)
self.avgpool1=nn.AvgPool2d(kernel_size=2,stride=2)
self.conv2=nn.Conv2d(in_channels=6,out_channels=16,kernel_size=5)
self.avgpool2=nn.AvgPool2d(kernel_size=2,stride=2)
self.flatten=nn.Flatten()
self.fc1 = nn.Linear(in_features=400,out_features=120)
self.fc2 = nn.Linear(in_features=120,out_features=84)
self.fc3 = nn.Linear(in_features=84, out_features=10)
```
其中,需要引入 `torch.nn` 模块,将 `nn.Conv2d`、`nn.AvgPool2d`、`nn.Flatten`、`nn.Linear` 替换掉原来的 `paddle.nn`。
阅读全文