class UNet(paddle.nn.Layer): def __init__(self, num_classes): super(UNet, self).__init__() self.conv_1 = paddle.nn.Conv2D(3, 32, kernel_size=3, stride=2, padding='same') self.bn = paddle.nn.BatchNorm2D(32) self.relu = paddle.nn.ReLU() in_channels = 32 self.encoders = [] self.encoder_list = [64, 128, 256] self.decoder_list = [256, 128, 64, 32] # 根据下采样个数和配置循环定义子Layer,避免重复写一样的程序 for out_channels in self.encoder_list: block = self.add_sublayer('encoder_{}'.format(out_channels), Encoder(in_channels, out_channels)) self.encoders.append(block) in_channels = out_channels self.decoders = [] # 根据上采样个数和配置循环定义子Layer,避免重复写一样的程序 for out_channels in self.decoder_list: block = self.add_sublayer('decoder_{}'.format(out_channels), Decoder(in_channels, out_channels)) self.decoders.append(block) in_channels = out_channels self.output_conv = paddle.nn.Conv2D(in_channels, num_classes, kernel_size=3, padding='same') def forward(self, inputs): y = self.conv_1(inputs) y = self.bn(y) y = self.relu(y) for encoder in self.encoders: y = encoder(y) for decoder in self.decoders: y = decoder(y) y = self.output_conv(y) return y怎么将该unet网络的层数改为5层
时间: 2024-01-01 22:04:04 浏览: 162
要将UNet网络的层数改为5层,可以按照以下步骤进行修改:
将Encoder和Decoder的个数都增加到4个,分别对应下采样和上采样的层数,即encoder_list = [64, 128, 256, 512] 和 decoder_list = [512, 256, 128, 64, 32]。
在网络的构造函数中增加一个新的Encoder和Decoder,代码如下:
self.encoder_512 = Encoder(256, 512)
self.encoders.append(self.encoder_512)
self.decoder_32 = Decoder(64, 32)
self.decoders.insert(0, self.decoder_32)
这里新增了一个从256通道到512通道的Encoder和一个从64通道到32通道的Decoder,并分别加入到encoders和decoders中。
- 最后,将输出层的输入通道数改为32,即将self.output_conv = paddle.nn.Conv2D(in_channels, num_classes, kernel_size=3, padding='same')中的in_channels改为32。
修改后的完整代码如下:
class UNet(paddle.nn.Layer):
def __init__(self, num_classes):
super(UNet, self).__init__()
self.conv_1 = paddle.nn.Conv2D(3, 32,
kernel_size=3,
stride=2,
padding='same')
self.bn = paddle.nn.BatchNorm2D(32)
self.relu = paddle.nn.ReLU()
in_channels = 32
self.encoders = []
self.encoder_list = [64, 128, 256, 512]
self.decoder_list = [512, 256, 128, 64, 32]
self.decoders = []
# 根据下采样个数和配置循环定义子Layer,避免重复写一样的程序
for out_channels in self.encoder_list:
block = self.add_sublayer('encoder_{}'.format(out_channels),
Encoder(in_channels, out_channels))
self.encoders.append(block)
in_channels = out_channels
# 新增一个Encoder
self.encoder_512 = Encoder(256, 512)
self.encoders.append(self.encoder_512)
# 根据上采样个数和配置循环定义子Layer,避免重复写一样的程序
for out_channels in self.decoder_list:
block = self.add_sublayer('decoder_{}'.format(out_channels),
Decoder(in_channels, out_channels))
self.decoders.append(block)
in_channels = out_channels
# 新增一个Decoder
self.decoder_32 = Decoder(64, 32)
self.decoders.insert(0, self.decoder_32)
self.output_conv = paddle.nn.Conv2D(32,
num_classes,
kernel_size=3,
padding='same')
def forward(self, inputs):
y = self.conv_1(inputs)
y = self.bn(y)
y = self.relu(y)
for encoder in self.encoders:
y = encoder(y)
for decoder in self.decoders:
y = decoder(y)
y = self.output_conv(y)
return y