self.network_parameters = OrderedDict(num_filters_base=config.num_filters_base, activation=config.activation, dropout_ratio=config.dropout_ratio, num_levels=config.num_levels, heatmap_initialization=True, data_format=self.data_format) if config.model == 'unet': self.network = Unet self.clip_gradient_global_norm = 100000.0

时间: 2024-04-09 20:32:10 浏览: 10
这部分代码主要是设置网络的参数和模型选择。 首先,使用`OrderedDict`创建了一个名为`network_parameters`的有序字典,其中包含了一些网络的参数。这些参数包括`num_filters_base`表示基础滤波器数量,`activation`表示激活函数,`dropout_ratio`表示随机失活比率,`num_levels`表示网络的层数,`heatmap_initialization`表示是否对热图进行初始化,`data_format`表示数据格式。 接下来,通过判断`config.model`的值是否为'unet'来选择对应的模型。如果是'unet',则将`self.network`设置为Unet类的引用。 最后,设置了一个全局梯度裁剪的阈值`clip_gradient_global_norm`为100000.0。这个阈值可以用来控制梯度更新的范围,防止梯度爆炸的问题。 这部分代码主要是设置网络相关的参数和选择模型,具体的网络结构和训练过程需要在其他部分的代码中实现。
相关问题

self.learning_rate = config.learning_rate self.learning_rates = [self.learning_rate, self.learning_rate * 0.5, self.learning_rate * 0.1] self.learning_rate_boundaries = [50000, 75000] self.max_iter = 10000 self.test_iter = 5000 self.disp_iter = 100 self.snapshot_iter = 5000 self.test_initialization = False self.reg_constant = 0.0 self.data_format = 'channels_first' self.network_parameters = OrderedDict(num_filters_base=config.num_filters_base, activation=config.activation, dropout_ratio=config.dropout_ratio, num_levels=config.num_levels, heatmap_initialization=True, data_format=self.data_format)

这段代码是在MainLoop类的初始化方法中设置了一些训练参数和网络参数。 - self.learning_rate:学习率,根据配置文件中的learning_rate来设置。 - self.learning_rates:学习率列表,根据self.learning_rate计算得到,包括三个值,分别为self.learning_rate、self.learning_rate * 0.5、self.learning_rate * 0.1。 - self.learning_rate_boundaries:学习率变化的边界,根据配置文件中的50000和75000来设置。 - self.max_iter:最大迭代次数,设置为10000。 - self.test_iter:测试迭代次数,设置为5000。 - self.disp_iter:显示迭代次数,每迭代100次显示一次。 - self.snapshot_iter:保存模型迭代次数,每迭代5000次保存一次模型。 - self.test_initialization:测试初始化标志,设置为False。 - self.reg_constant:正则化系数,设置为0.0。 - self.data_format:数据格式,设置为'channels_first'。 - self.network_parameters:网络参数,使用有序字典OrderedDict保存。包括num_filters_base、activation、dropout_ratio、num_levels、heatmap_initialization和data_format等参数。 这些参数和网络参数将在训练过程中使用。如果你还有其他问题,请继续提问。

下面给出一段详细代码:class CrnModel: def init(self, feature_num): self.feature_num = feature_num self.input_magnitude = layers.Input(shape=[128, feature_num], name='input_magnitude') model_output = self.structure_model() self.model = tf.keras.Model(inputs=self.input_magnitude, outputs=model_output) self.model.summary() def structure_model(self): layer_input = self.input_magnitude layer_output = layers.Conv1D(filters=64, padding='causal', dilation_rate=1, kernel_size=3, activation='relu')( layer_input) layer_output = layers.Conv1D(filters=64, padding='causal', dilation_rate=2, kernel_size=3, activation='relu')( layer_output) layer_output = layers.Conv1D(filters=64, padding='causal', dilation_rate=4, kernel_size=3, activation='relu')( layer_output) layer_output = layers.Conv1D(filters=64, kernel_size=1, activation='linear')(layer_output) layer_output = layers.Conv1D(filters=257, kernel_size=1, activation='relu')(layer_output) return layer_output。请你给出详细解释和注释

这是一个使用 TensorFlow 实现的 CRN(Causal Residual Network)模型,用于音频信号处理。下面是对代码的详细注释: ``` class CrnModel: def __init__(self, feature_num): self.feature_num = feature_num # 初始化类的特征数 self.input_magnitude = layers.Input(shape=[128, feature_num], name='input_magnitude') # 定义输入层,输入维度为 [128, feature_num] model_output = self.structure_model() # 定义模型输出 self.model = tf.keras.Model(inputs=self.input_magnitude, outputs=model_output) # 定义完整模型 self.model.summary() # 打印模型概述 def structure_model(self): layer_input = self.input_magnitude # 定义输入层 layer_output = layers.Conv1D(filters=64, padding='causal', dilation_rate=1, kernel_size=3, activation='relu')(layer_input) # 第一层卷积层 layer_output = layers.Conv1D(filters=64, padding='causal', dilation_rate=2, kernel_size=3, activation='relu')(layer_output) # 第二层卷积层 layer_output = layers.Conv1D(filters=64, padding='causal', dilation_rate=4, kernel_size=3, activation='relu')(layer_output) # 第三层卷积层 layer_output = layers.Conv1D(filters=64, kernel_size=1, activation='linear')(layer_output) # 用 1x1 卷积层降维 layer_output = layers.Conv1D(filters=257, kernel_size=1, activation='relu')(layer_output) # 最终输出层,输出维度为 257 return layer_output # 返回最终输出层 ``` 该模型使用了四个卷积层,其中 dilation_rate 表示膨胀率,padding 表示填充方式,kernel_size 表示卷积核大小,filters 表示卷积核数量,activation 表示激活函数。模型输入维度为 [128, feature_num],输出维度为 [128, 257],其中 257 表示频域的维度。最后使用 Keras 的 Model 类定义完整模型,并打印模型概述。

相关推荐

import pandas as pd import warnings import sklearn.datasets import sklearn.linear_model import matplotlib import matplotlib.font_manager as fm import matplotlib.pyplot as plt import numpy as np import seaborn as sns data = pd.read_excel(r'C:\Users\Lenovo\Desktop\data.xlsx') print(data.info()) fig = plt.figure(figsize=(10, 8)) sns.heatmap(data.corr(), cmap="YlGnBu", annot=True) plt.title('相关性分析热力图') plt.rcParams['axes.unicode_minus'] = False plt.rcParams['font.sans-serif'] = 'SimHei' plt.show() y = data['y'] x = data.drop(['y'], axis=1) print('************************输出新的特征集数据***************************') print(x.head()) from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42) def relu(x): output=np.maximum(0, x) return output def relu_back_propagation(derror_wrt_output,x): derror_wrt_dinputs = np.array(derror_wrt_output, copy=True) derror_wrt_dinputs[x <= 0] = 0 return derror_wrt_dinputs def activated(activation_choose,x): if activation_choose == 'relu': return relu(x) def activated_back_propagation(activation_choose, derror_wrt_output, output): if activation_choose == 'relu': return relu_back_propagation(derror_wrt_output, output) class NeuralNetwork: def __init__(self, layers_strcuture, print_cost = False): self.layers_strcuture = layers_strcuture self.layers_num = len(layers_strcuture) self.param_layers_num = self.layers_num - 1 self.learning_rate = 0.0618 self.num_iterations = 2000 self.x = None self.y = None self.w = dict() self.b = dict() self.costs = [] self.print_cost = print_cost self.init_w_and_b() def set_learning_rate(self,learning_rate): self.learning_rate=learning_rate def set_num_iterations(self, num_iterations): self.num_iterations = num_iterations def set_xy(self, input, expected_output): self.x = input self.y = expected_output

解释一下这段代码:class ResnetBlock(Model): def __init__(self, filters, strides=1,residual_path=False): super(ResnetBlock, self).__init__() self.filters = filters self.strides = strides self.residual_path = residual_path self.c1 = Conv2D(filters, (3, 3), strides=strides, padding='same', use_bias=False) self.b1 = BatchNormalization() self.a1 = Activation('relu') self.c2 = Conv2D(filters, (3, 3), strides=1, padding='same', use_bias=False) self.b2 = BatchNormalization() if residual_path: self.down_c1 = Conv2D(filters, (1, 1),strides=strides, padding='same', use_bias=False) self.down_b1 = BatchNormalization() self.a2 = Activation('relu') def call(self, inputs): residual = inputs x = self.c1(inputs) x = self.b1(x) x = self.a1(x) x = self.c2(x) y = self.b2(x) if self.residual_path: residual = self.down_c1(inputs) residual = self.down_b1(residual) out = self.a2(y + residual) return out class ResNet18(Model): def __init__(self, block_list, initial_filters=64): super(ResNet18, self).__init__() self.num_blocks = len(block_list) self.block_list = block_list self.out_filters = initial_filters self.c1 = Conv2D(self.out_filters, (3, 3), strides=1, padding='same', use_bias=False, kernel_initializer='he_normal') self.b1 = BatchNormalization() self.a1 = Activation('relu') self.blocks = tf.keras.models.Sequential() for block_id in range(len(block_list)): for layer_id in range(block_list[block_id]): if block_id != 0 and layer_id == 0: block = ResnetBlock(self.out_filters, strides=2, residual_path=True) else: block = ResnetBlock(self.out_filters, residual_path=False) self.blocks.add(block) self.out_filters *= 2 self.p1 = tf.keras.layers.GlobalAveragePooling2D() self.f1 = tf.keras.layers.Dense(41, activation='tanh') def call(self, inputs): x = self.c1(inputs) x = self.b1(x) x = self.a1(x) x = self.blocks(x) x = self.p1(x) y = self.f1(x) return y

解释一下这段代码import pdb import tensorflow as tf from matplotlib import pyplot as plt import numpy as np import os from tensorflow.keras import Model from tensorflow.keras.layers import Conv2D,BatchNormalization,Activation,MaxPool2D,Dense,Dropout,Flatten,GlobalAveragePooling2D np.set_printoptions(threshold=np.inf) class ResnetBlock(Model): def __init__(self, filters, strides=1,residual_path=False): super(ResnetBlock, self).__init__() self.filters = filters self.strides = strides self.residual_path = residual_path self.c1 = Conv2D(filters, (3, 3), strides=strides, padding='same', use_bias=False) self.b1 = BatchNormalization() self.a1 = Activation('relu') self.c2 = Conv2D(filters, (3, 3), strides=1, padding='same', use_bias=False) self.b2 = BatchNormalization() if residual_path: self.down_c1 = Conv2D(filters, (1, 1),strides=strides, padding='same', use_bias=False) self.down_b1 = BatchNormalization() self.a2 = Activation('relu') def call(self, inputs): residual = inputs x = self.c1(inputs) x = self.b1(x) x = self.a1(x) x = self.c2(x) y = self.b2(x) if self.residual_path: residual = self.down_c1(inputs) residual = self.down_b1(residual) out = self.a2(y + residual) return out class ResNet18(Model): def __init__(self, block_list, initial_filters=64): super(ResNet18, self).__init__() self.num_blocks = len(block_list) self.block_list = block_list self.out_filters = initial_filters self.c1 = Conv2D(self.out_filters, (3, 3), strides=1, padding='same', use_bias=False, kernel_initializer='he_normal') self.b1 = BatchNormalization() self.a1 = Activation('relu') self.blocks = tf.keras.models.Sequential() for block_id in range(len(block_list)): for layer_id in range(block_list[block_id]): if block_id != 0 and layer_id == 0: block = ResnetBlock(self.out_filters, strides=2, residual_path=True) else: block = ResnetBlock(self.out_filters, residual_path=False) self.blocks.add(block) self.out_filters *= 2 self.p1 = tf.keras.layers.GlobalAveragePooling2D() self.f1 = tf.keras.layers.Dense(41, activation='tanh') def call(self, inputs): x = self.c1(inputs) x = self.b1(x) x = self.a1(x) x = self.blocks(x) x = self.p1(x) y = self.f1(x) return y

详细解释一下这段代码:class ResnetBlock(Model): def init(self, filters, strides=1,residual_path=False): super(ResnetBlock, self).init() self.filters = filters self.strides = strides self.residual_path = residual_path self.c1 = Conv2D(filters, (3, 3), strides=strides, padding='same', use_bias=False) self.b1 = BatchNormalization() self.a1 = Activation('relu') self.c2 = Conv2D(filters, (3, 3), strides=1, padding='same', use_bias=False) self.b2 = BatchNormalization() if residual_path: self.down_c1 = Conv2D(filters, (1, 1),strides=strides, padding='same', use_bias=False) self.down_b1 = BatchNormalization() self.a2 = Activation('relu') def call(self, inputs): residual = inputs x = self.c1(inputs) x = self.b1(x) x = self.a1(x) x = self.c2(x) y = self.b2(x) if self.residual_path: residual = self.down_c1(inputs) residual = self.down_b1(residual) out = self.a2(y + residual) return out class ResNet18(Model): def init(self, block_list, initial_filters=64): super(ResNet18, self).init() self.num_blocks = len(block_list) self.block_list = block_list self.out_filters = initial_filters self.c1 = Conv2D(self.out_filters, (3, 3), strides=1, padding='same', use_bias=False, kernel_initializer='he_normal') self.b1 = BatchNormalization() self.a1 = Activation('relu') self.blocks = tf.keras.models.Sequential() for block_id in range(len(block_list)): for layer_id in range(block_list[block_id]): if block_id != 0 and layer_id == 0: block = ResnetBlock(self.out_filters, strides=2, residual_path=True) else: block = ResnetBlock(self.out_filters, residual_path=False) self.blocks.add(block) self.out_filters *= 2 self.p1 = tf.keras.layers.GlobalAveragePooling2D() self.f1 = tf.keras.layers.Dense(41, activation='tanh') def call(self, inputs): x = self.c1(inputs) x = self.b1(x) x = self.a1(x) x = self.blocks(x) x = self.p1(x) y = self.f1(x) return y

最新推荐

recommend-type

智能制造的数字化工厂规划qytp.pptx

智能制造的数字化工厂规划qytp.pptx
recommend-type

罗兰贝格:德隆人力资源管理体系gltp.pptx

罗兰贝格:德隆人力资源管理体系gltp.pptx
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

帮我实现在Androidstudio调用chapgpt并提供源码

首先,你需要运行一个ChitGPT的服务器,然后通过Android应用程序与该服务器进行通信。以下是一个简单的Android应用程序示例,可以与ChitGPT进行通信: 1. 首先,在Android Studio中创建一个新的项目,并添加以下依赖项: ``` implementation 'com.squareup.okhttp3:okhttp:4.9.0' implementation 'com.google.code.gson:gson:2.8.6' ``` 2. 创建一个新的Java类,用于与ChitGPT服务器通信。以下是一个简单的实现: ```java import com.