self.learning_rate = config.learning_rate self.learning_rates = [self.learning_rate, self.learning_rate * 0.5, self.learning_rate * 0.1] self.learning_rate_boundaries = [50000, 75000] self.max_iter = 10000 self.test_iter = 5000 self.disp_iter = 100 self.snapshot_iter = 5000 self.test_initialization = False self.reg_constant = 0.0 self.data_format = 'channels_first' self.network_parameters = OrderedDict(num_filters_base=config.num_filters_base, activation=config.activation, dropout_ratio=config.dropout_ratio, num_levels=config.num_levels, heatmap_initialization=True, data_format=self.data_format)
时间: 2024-02-10 10:23:55 浏览: 91
这段代码是在MainLoop类的初始化方法中设置了一些训练参数和网络参数。
- self.learning_rate:学习率,根据配置文件中的learning_rate来设置。
- self.learning_rates:学习率列表,根据self.learning_rate计算得到,包括三个值,分别为self.learning_rate、self.learning_rate * 0.5、self.learning_rate * 0.1。
- self.learning_rate_boundaries:学习率变化的边界,根据配置文件中的50000和75000来设置。
- self.max_iter:最大迭代次数,设置为10000。
- self.test_iter:测试迭代次数,设置为5000。
- self.disp_iter:显示迭代次数,每迭代100次显示一次。
- self.snapshot_iter:保存模型迭代次数,每迭代5000次保存一次模型。
- self.test_initialization:测试初始化标志,设置为False。
- self.reg_constant:正则化系数,设置为0.0。
- self.data_format:数据格式,设置为'channels_first'。
- self.network_parameters:网络参数,使用有序字典OrderedDict保存。包括num_filters_base、activation、dropout_ratio、num_levels、heatmap_initialization和data_format等参数。
这些参数和网络参数将在训练过程中使用。如果你还有其他问题,请继续提问。
阅读全文