class CustomModel(nn.Module): def __init__(self, cfg, weight=None): super().__init__() self.cfg = cfg #参数encoder_name用于指定使用哪种预训练的encoder模型。这里采用的是已经预训练好的模型,因此指定了encoder_name参数。 # 这样做的好处是可以利用已有的预训练模型的特征提取能力,从而加速模型的训练和提高模型的准确率。同时,也可以根据实际需要选择不同的预训练模型,以达到更好的效果。 # 我们可以使用图像分类模型的预训练权重来初始化UNet网络的卷积层,从而提高模型的性能和泛化能力 # encoder_name:表示使用的预训练模型的名称 # encoder_weights:表示使用的预训练模型的权重,通常使用 imagenet。 # in_channels:表示输入图像的通道数,比如 RGB 图像为 3 通道 # classes:表示分类数,对于图像分割任务来说,通常表示像素分类数。 # activation:表示激活函数,通常为 None(不使用激活函数)或者 sigmoid(输出结果在 0 到 1 之间)。 self.encoder = smp.Unet( encoder_name=cfg.backbone, encoder_weights=weight, in_channels=cfg.in_chans, classes=cfg.target_size, activation=None, ) # 在初始化完成后,可以将输入图像送入该模型进行前向传播,得到相应的分割结果。 def forward(self, image): output = self.encoder(image) # output = output.squeeze(-1) return output代码中的forward函数是自动执行的吗
时间: 2023-06-17 09:07:15 浏览: 202
不是自动执行的,它是模型的前向传播函数,用于对输入数据进行处理并返回输出结果。在 PyTorch 中,每个 nn.Module 都必须实现 forward 函数,该函数接收输入数据并返回输出结果。当调用模型的 forward 函数时,PyTorch 会自动执行前向传播过程,并返回输出结果。所以,当你调用 CustomModel 的 forward 函数并传入输入图像时,会自动执行 Unet 模型的前向传播过程,从而得到相应的分割结果。
相关问题
class Net(nn.Module): def __init__(self,): super().__init__() conv_dim=64 encoder_dim = [conv_dim] + [64, 128, 256, 512 ] self.encoder = resnet34d(pretrained=False,in_chans=CFG.one_depth) self.decoder = SmpUnetDecoder( encoder_channels=[0] + encoder_dim, decoder_channels=[256, 128, 64, 32, 16], n_blocks=5, use_batchnorm=True, center=False, attention_type=None, ) self.logit = nn.Conv2d(16,1,kernel_size=1) #-- pool attention weight self.weight = nn.ModuleList([ nn.Sequential( nn.Conv2d(dim, dim, kernel_size=3, padding=1), nn.ReLU(inplace=True), ) for dim in encoder_dim ])
这是一个 PyTorch 中的神经网络模型类定义,包含了一个卷积编码器和一个 SmpUnet 解码器。其中,卷积编码器使用了 resnet34d 预训练模型,解码器的输入通道数为 [0] + encoder_dim,输出通道数为 [256, 128, 64, 32, 16],使用了 5 个块,每个块中都包含了一个卷积层和一个 ReLU 激活函数。最终输出的 logit 是一个 1x1 的卷积层,输出通道数为 1。此外,还定义了一个 ModuleList,其中包含了多个卷积层,用于计算权重。
尝试将 SCRIPT vgg16 作为函数执行:
好的,可以使用以下代码将 SCRIPT vgg16 作为函数执行:
```python
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
model_urls = {
'vgg16': 'https://download.pytorch.org/models/vgg16-397923af.pth',
}
def make_layers(cfg, batch_norm=False):
layers = []
in_channels = 3
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = v
return nn.Sequential(*layers)
class VGG(nn.Module):
def __init__(self, features, num_classes=1000, init_weights=True):
super(VGG, self).__init__()
self.features = features
self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, num_classes),
)
if init_weights:
self._initialize_weights()
def forward(self, x):
x = self.features(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
def vgg16(pretrained=False, **kwargs):
"""VGG 16-layer model (configuration "D")
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
if pretrained:
kwargs['init_weights'] = False
model = VGG(make_layers(cfg['D']), **kwargs)
model.load_state_dict(model_zoo.load_url(model_urls['vgg16']))
else:
model = VGG(make_layers(cfg['D']), **kwargs)
return model
cfg = {
'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}
```
现在,当你需要使用 VGG16 模型的时候,可以直接调用 `vgg16()` 函数,如下所示:
```python
model = vgg16(pretrained=True)
```
阅读全文