class SelfAttention(nn.Module): def init(self, in_channels, reduction=4): super(SelfAttention, self).init() self.avg_pool = nn.AdaptiveAvgPool1d(1) self.fc1 = nn.Conv1d(in_channels, in_channels // reduction, 1, bias=False) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv1d(in_channels // reduction, in_channels, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): b, c, n = x.size() y = self.avg_pool(x) y = self.fc1(y) y = self.relu(y) y = self.fc2(y) y = self.sigmoid(y) return x * y.expand_as(x) def get_model(input_channels=6, use_xyz=True): return Pointnet2MSG(input_channels=input_channels, use_xyz=use_xyz) class Pointnet2MSG(nn.Module): def init(self, input_channels=6, use_xyz=True): super().init() self.SA_modules = nn.ModuleList() channel_in = input_channels skip_channel_list = [input_channels] for k in range(cfg.RPN.SA_CONFIG.NPOINTS.len()): mlps = cfg.RPN.SA_CONFIG.MLPS[k].copy() channel_out = 0 for idx in range(mlps.len()): mlps[idx] = [channel_in] + mlps[idx] channel_out += mlps[idx][-1] mlps.append(channel_out) self.SA_modules.append( nn.Sequential( PointnetSAModuleMSG( npoint=cfg.RPN.SA_CONFIG.NPOINTS[k], radii=cfg.RPN.SA_CONFIG.RADIUS[k], nsamples=cfg.RPN.SA_CONFIG.NSAMPLE[k], mlps=mlps, use_xyz=use_xyz, bn=cfg.RPN.USE_BN ), SelfAttention(channel_out) ) ) skip_channel_list.append(channel_out) channel_in = channel_out self.FP_modules = nn.ModuleList() for k in range(cfg.RPN.FP_MLPS.len()): pre_channel = cfg.RPN.FP_MLPS[k + 1][-1] if k + 1 < len(cfg.RPN.FP_MLPS) else channel_out self.FP_modules.append( PointnetFPModule( mlp=[pre_channel + skip_channel_list[k]] + cfg.RPN.FP_MLPS[k] ) )根据如上代码,如果要在Pointnet2MSG类中的forward函数调用SA_modules的话需要传入哪些参数,几个参数?初步的forward函数时这样的 def forward(self, pointcloud: torch.cuda.FloatTensor): xyz, features = self._break_up_pc(pointcloud) l_xyz, l_features = [xyz]然后需要return l_xyz[0], l_features[0]
时间: 2023-06-27 17:08:12 浏览: 103
在Pointnet2MSG类中的forward函数调用SA_modules时,需要传入点云数据的坐标xyz和特征features作为参数。具体来说,可以按照以下方式实现forward函数:
```
def forward(self, pointcloud: torch.cuda.FloatTensor):
xyz, features = self._break_up_pc(pointcloud)
l_xyz, l_features = [xyz], [features]
for i in range(len(self.SA_modules)):
l_xyz_i, l_features_i = self.SA_modules[i](l_xyz[i], l_features[i])
if i != len(self.SA_modules) - 1:
l_features_i = l_features_i.transpose(1, 2).contiguous()
new_xyz = pointnet2_utils.gather_operation(
l_xyz[i+1], pointnet2_utils.furthest_point_sample(
l_xyz_i, cfg.RPN.SA_CONFIG.NPOINTS[i+1]
)
)
l_xyz.append(new_xyz)
l_features.append(l_features_i)
return l_xyz[0], l_features[0]
```
在SA_modules中,每个模块都需要点云数据的坐标xyz和特征features作为输入,在SelfAttention中则只需要特征features作为输入。因此,在调用SA_modules时,需要将xyz和features一起作为输入,而在返回时只需要返回最后一层的xyz和features即可。在代码中,l_xyz和l_features分别记录每一层的坐标和特征,通过循环遍历SA_modules来逐层计算。在计算每一层时,需要先将上一层的特征转置,然后通过furthest_point_sample函数来获取采样点的坐标,最后将新的坐标和特征加入到l_xyz和l_features中。最后返回最后一层的坐标和特征即可。
阅读全文