class DownConv(nn.Module): def __init__(self, seq_len=200, hidden_size=64, m_segments=4,k1=10,channel_reduction=16): super().__init__() """ DownConv is implemented by stacked strided convolution layers and more details can be found below. When the parameters k_1 and k_2 are determined, we can soon get m in Eq.2 of the paper. However, we are more concerned with the size of the parameter m, so we searched for a combination of parameter m and parameter k_1 (parameter k_2 can be easily calculated in this process) to find the optimal segment numbers. Args: input_tensor (torch.Tensor): the input of the attention layer Returns: output_conv (torch.Tensor): the convolutional outputs in Eq.2 of the paper """ self.m =m_segments self.k1 = k1 self.channel_reduction = channel_reduction # avoid over-parameterization middle_segment_length = seq_len/k1 k2=math.ceil(middle_segment_length/m_segments) padding = math.ceil((k2*self.m-middle_segment_length)/2.0) # pad the second convolutional layer appropriately self.conv1a = nn.Conv1d(in_channels=hidden_size, out_channels=hidden_size // self.channel_reduction, kernel_size=self.k1, stride=self.k1) self.relu1a = nn.ReLU(inplace=True) self.conv2a = nn.Conv1d(in_channels=hidden_size // self.channel_reduction, out_channels=hidden_size, kernel_size=k2, stride=k2, padding = padding) def forward(self, input_tensor): input_tensor = input_tensor.permute(0, 2, 1) x1a = self.relu1a(self.conv1a(input_tensor)) x2a = self.conv2a(x1a) if x2a.size(2) != self.m: print('size_erroe, x2a.size_{} do not equals to m_segments_{}'.format(x2a.size(2),self.m)) output_conv = x2a.permute(0, 2, 1) return output_conv

时间: 2024-02-14 21:35:25 浏览: 26
这是一个用于实现降采样卷积(DownConv)的PyTorch模型类。在构造函数中,需要指定一些参数,包括序列长度seq_len,隐藏层大小hidden_size,中间段数m_segments,卷积核大小k1和通道缩减channel_reduction。其中,降采样卷积层的实现使用了两个卷积层,第一个卷积层的卷积核大小为k1,步长为k1,将输入张量进行降采样;第二个卷积层的卷积核大小为k2,步长为k2,将第一个卷积层的输出进行进一步的降采样,并按照论文中的公式计算得到输出张量。为了使得第二个卷积层的输出张量大小与中间段数m_segments相等,需要在卷积层中进行适当的padding。在前向传播时,需要将输入张量进行维度变换,使得其可以被卷积层处理,然后将卷积层的输出张量再次进行维度变换,使得其可以作为下一层的输入。如果第二个卷积层的输出张量大小不等于中间段数m_segments,则会输出一条错误信息。
相关问题

class LSTM(nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size): super().__init__() self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.output_size = output_size self.num_directions = 1 # 单向LSTM self.batch_size = batch_size self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True) self.linear = nn.Linear(self.hidden_size, self.output_size) def forward(self, input_seq): batch_size, seq_len = input_seq[0], input_seq[1] h_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device) c_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device) # output(batch_size, seq_len, num_directions * hidden_size) output, _ = self.lstm(input_seq, (h_0, c_0)) pred = self.linear(output) pred = pred[:, -1, :] return pred这些代码分别是什么意思

这些代码是一个 PyTorch 模型的实现,该模型是一个基于 LSTM 的序列预测模型。具体解释如下: - `class LSTM(nn.Module):` 定义了一个 LSTM 模型类,继承自 PyTorch 的 nn.Module 类。 - `def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size):` 定义了模型的构造函数,接收五个参数:输入特征维度 `input_size`、隐藏层特征维度 `hidden_size`、LSTM 层数 `num_layers`、输出特征维度 `output_size`、batch 大小 `batch_size`。 - `super().__init__():` 调用父类的构造函数,初始化模型的基本属性。 - `self.input_size = input_size`、`self.hidden_size = hidden_size`、`self.num_layers = num_layers`、`self.output_size = output_size`、`self.batch_size = batch_size` 分别初始化模型的输入特征维度、隐藏层特征维度、LSTM 层数、输出特征维度和 batch 大小等属性。 - `self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True)` 定义了一个 LSTM 层,接收四个参数:输入特征维度,隐藏层特征维度,LSTM 层数和 batch_first 的值为 True,表示输入数据的维度顺序为 (batch_size, seq_len, input_size)。 - `self.linear = nn.Linear(self.hidden_size, self.output_size)` 定义了一个全连接层,用于将 LSTM 层的输出特征映射到指定的输出维度。 - `def forward(self, input_seq):` 定义了模型的前向传播函数,接收一个参数 `input_seq`,表示输入的序列数据。 - `batch_size, seq_len = input_seq[0], input_seq[1]` 解析输入数据的 batch 大小和序列长度。 - `h_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device)` 和 `c_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device)` 初始化 LSTM 层的初始隐藏状态和细胞状态,使用随机生成的张量,并将它们移动到指定的设备上。 - `output, _ = self.lstm(input_seq, (h_0, c_0))` 将输入序列和初始状态输入到 LSTM 层中,得到 LSTM 层的输出和最后一个时间步的隐藏状态。 - `pred = self.linear(output)` 将 LSTM 层的输出特征映射到指定的输出维度。 - `pred = pred[:, -1, :]` 取最后一个时间步的输出特征作为预测结果。 总的来说,这段代码实现了一个基于 LSTM 的序列预测模型,可以用于对时序数据进行预测。

class PoetryModel(nn.Module): def __init__(self, vocab_size, embedding_dim, hidden_dim): super(PoetryModel, self).__init__() self.hidden_dim = hidden_dim self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, self.hidden_dim, num_layers=3) self.classifier=nn.Sequential( nn.Linear(self.hidden_dim, 512), nn.ReLU(inplace=True), nn.Linear(512, 2048), nn.ReLU(inplace=True), nn.Linear(2048, vocab_size) ) def forward(self, input, hidden = None): seq_len, batch_size = input.size() if hidden is None: h_0 = input.data.new(3, batch_size, self.hidden_dim).fill_(0).float() c_0 = input.data.new(3, batch_size, self.hidden_dim).fill_(0).float() else: h_0, c_0 = hidden embeds = self.embedding(input) output, hidden = self.lstm(embeds, (h_0, c_0)) output = self.classifier(output.view(seq_len * batch_size, -1)) return output, hidden 解释该段代码

这段代码是一个 PyTorch 模型类 `PoetryModel` 的定义,该模型用于生成诗歌文本。以下是该模型的详细解释: 1. `__init__(self, vocab_size, embedding_dim, hidden_dim)`:该函数是类的初始化函数,它定义了该模型的各个层及其参数,其中 `vocab_size` 表示词汇表的大小,`embedding_dim` 表示嵌入层的维度,`hidden_dim` 表示 LSTM 隐藏层的维度。 2. `super(PoetryModel, self).__init__()`:该语句调用了父类 `nn.Module` 的初始化函数,以便能够正确地构建模型。 3. `self.hidden_dim = hidden_dim`:该语句将隐藏层维度保存在实例变量 `self.hidden_dim` 中。 4. `self.embedding = nn.Embedding(vocab_size, embedding_dim)`:该语句定义了一个嵌入层,用于将词汇表中的每个词转换成一个固定维度的向量表示。 5. `self.lstm = nn.LSTM(embedding_dim, self.hidden_dim, num_layers=3)`:该语句定义了一个 LSTM 层,用于学习输入序列的长期依赖关系。其中 `num_layers` 参数表示 LSTM 层的层数。 6. `self.classifier = nn.Sequential(...)`:该语句定义了一个分类器,用于将 LSTM 输出的特征向量映射到词汇表中每个词的概率分布。 7. `forward(self, input, hidden=None)`:该函数定义了模型的前向传播过程。其中 `input` 表示输入的序列,`hidden` 表示 LSTM 的初始隐藏状态。 8. `seq_len, batch_size = input.size()`:该语句获取输入序列的长度和批次大小。 9. `if hidden is None: ... else: ...`:该语句根据是否提供了初始隐藏状态,决定是否使用零向量作为初始隐藏状态。 10. `embeds = self.embedding(input)`:该语句将输入序列中的每个词都通过嵌入层转换成向量表示。 11. `output, hidden = self.lstm(embeds, (h_0, c_0))`:该语句将嵌入层的输出输入到 LSTM 层中,并获取 LSTM 输出的特征向量和最终的隐藏状态。 12. `output = self.classifier(output.view(seq_len * batch_size, -1))`:该语句将 LSTM 输出的特征向量通过分类器进行映射,并将其转换成形状为 `(seq_len * batch_size, vocab_size)` 的张量。 13. `return output, hidden`:该语句返回模型的输出和最终的隐藏状态。其中输出是一个张量,表示每个时间步的词汇表中每个词的概率分布,而隐藏状态则是一个元组,表示 LSTM 的最终

相关推荐

这段代码中加一个test loss功能 class LSTM(nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size, device): super().__init__() self.device = device self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.output_size = output_size self.num_directions = 1 # 单向LSTM self.batch_size = batch_size self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True) self.linear = nn.Linear(65536, self.output_size) def forward(self, input_seq): h_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(self.device) c_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(self.device) output, _ = self.lstm(input_seq, (h_0, c_0)) pred = self.linear(output.contiguous().view(self.batch_size, -1)) return pred if __name__ == '__main__': # 加载已保存的模型参数 saved_model_path = '/content/drive/MyDrive/危急值/model/dangerous.pth' device = 'cuda:0' lstm_model = LSTM(input_size=1, hidden_size=64, num_layers=1, output_size=3, batch_size=256, device='cuda:0').to(device) state_dict = torch.load(saved_model_path) lstm_model.load_state_dict(state_dict) dataset = ECGDataset(X_train_df.to_numpy()) dataloader = DataLoader(dataset, batch_size=256, shuffle=True, num_workers=0, drop_last=True) loss_fn = nn.CrossEntropyLoss() optimizer = optim.SGD(lstm_model.parameters(), lr=1e-4) for epoch in range(200000): print(f'epoch:{epoch}') lstm_model.train() epoch_bar = tqdm(dataloader) for x, y in epoch_bar: optimizer.zero_grad() x_out = lstm_model(x.to(device).type(torch.cuda.FloatTensor)) loss = loss_fn(x_out, y.long().to(device)) loss.backward() epoch_bar.set_description(f'loss:{loss.item():.4f}') optimizer.step() if epoch % 100 == 0 or epoch == epoch - 1: torch.save(lstm_model.state_dict(), "/content/drive/MyDrive/危急值/model/dangerous.pth") print("权重成功保存一次")

下面的这段python代码,哪里有错误,修改一下:import numpy as np import matplotlib.pyplot as plt import pandas as pd import torch import torch.nn as nn from torch.autograd import Variable from sklearn.preprocessing import MinMaxScaler training_set = pd.read_csv('CX2-36_1971.csv') training_set = training_set.iloc[:, 1:2].values def sliding_windows(data, seq_length): x = [] y = [] for i in range(len(data) - seq_length): _x = data[i:(i + seq_length)] _y = data[i + seq_length] x.append(_x) y.append(_y) return np.array(x), np.array(y) sc = MinMaxScaler() training_data = sc.fit_transform(training_set) seq_length = 1 x, y = sliding_windows(training_data, seq_length) train_size = int(len(y) * 0.8) test_size = len(y) - train_size dataX = Variable(torch.Tensor(np.array(x))) dataY = Variable(torch.Tensor(np.array(y))) trainX = Variable(torch.Tensor(np.array(x[1:train_size]))) trainY = Variable(torch.Tensor(np.array(y[1:train_size]))) testX = Variable(torch.Tensor(np.array(x[train_size:len(x)]))) testY = Variable(torch.Tensor(np.array(y[train_size:len(y)]))) class LSTM(nn.Module): def __init__(self, num_classes, input_size, hidden_size, num_layers): super(LSTM, self).__init__() self.num_classes = num_classes self.num_layers = num_layers self.input_size = input_size self.hidden_size = hidden_size self.seq_length = seq_length self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, num_classes) def forward(self, x): h_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) c_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) # Propagate input through LSTM ula, (h_out, _) = self.lstm(x, (h_0, c_0)) h_out = h_out.view(-1, self.hidden_size) out = self.fc(h_out) return out num_epochs = 2000 learning_rate = 0.001 input_size = 1 hidden_size = 2 num_layers = 1 num_classes = 1 lstm = LSTM(num_classes, input_size, hidden_size, num_layers) criterion = torch.nn.MSELoss() # mean-squared error for regression optimizer = torch.optim.Adam(lstm.parameters(), lr=learning_rate) # optimizer = torch.optim.SGD(lstm.parameters(), lr=learning_rate) runn = 10 Y_predict = np.zeros((runn, len(dataY))) # Train the model for i in range(runn): print('Run: ' + str(i + 1)) for epoch in range(num_epochs): outputs = lstm(trainX) optimizer.zero_grad() # obtain the loss function loss = criterion(outputs, trainY) loss.backward() optimizer.step() if epoch % 100 == 0: print("Epoch: %d, loss: %1.5f" % (epoch, loss.item())) lstm.eval() train_predict = lstm(dataX) data_predict = train_predict.data.numpy() dataY_plot = dataY.data.numpy() data_predict = sc.inverse_transform(data_predict) dataY_plot = sc.inverse_transform(dataY_plot) Y_predict[i,:] = np.transpose(np.array(data_predict)) Y_Predict = np.mean(np.array(Y_predict)) Y_Predict_T = np.transpose(np.array(Y_Predict))

class SelfAttention(nn.Module): def init(self, input_size=1, num_heads=1): super(SelfAttention, self).init() self.num_heads = 1 self.head_size = 1 self.query = nn.Linear(1, 1) self.key = nn.Linear(1, 1) self.value = nn.Linear(1, 1) self.out = nn.Linear(1, 1) def forward(self, inputs): batch_size, seq_len, input_size = inputs.size() # 128 706 1 # Split inputs into num_heads inputs = inputs.view(batch_size, seq_len, self.num_heads, self.head_size) inputs = inputs.permute(0, 2, 1, 3).contiguous() queries = self.query(inputs).view(batch_size, self.num_heads, seq_len, self.head_size) keys = self.key(inputs).view(batch_size, self.num_heads, seq_len, self.head_size) values = self.value(inputs).view(batch_size, self.num_heads, seq_len, self.head_size) # Compute attention scores scores = torch.matmul(queries, keys.permute(0, 1, 3, 2)) scores = scores / (self.head_size ** 0.5) attention = F.softmax(scores, dim=-1) # Apply attention weights to values attention_output = torch.matmul(attention, values) attention_output = attention_output.view(batch_size, seq_len, input_size) # Apply output linear layer output = self.out(attention_output) return output class DenseAttentionLayer(nn.Module): def init(self, input_size, return_alphas=True, name=None, num_heads=1): super(DenseAttentionLayer, self).init() self.return_alphas = return_alphas self.name = name self.num_heads = num_heads # If input comes with a hidden dimension (e.g. 5 features per gene) # print("len(input_size): ",len(input_size)) # 2 if len(input_size) == 3: self.feature_collapse = nn.Linear(input_size[-1], 1) input_size = (input_size[0], input_size[1]) self.attention = SelfAttention(input_size=1, num_heads=1) def forward(self, inputs): print("inputs.shape: ",inputs.shape) # torch.Size([128, 706]) output = self.attention(inputs) if self.return_alphas: alphas = F.softmax(output, dim=1) return torch.mul(inputs, alphas), alphas else: return output 对于上述代码其中numheads=1 headsize=1

最新推荐

recommend-type

基于STC32单片机内部RTC的学习计时器+全部资料+详细文档(高分项目).zip

【资源说明】 基于STC32单片机内部RTC的学习计时器+全部资料+详细文档(高分项目).zip基于STC32单片机内部RTC的学习计时器+全部资料+详细文档(高分项目).zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

2023新型智慧城市智慧交通专项设计方案[498页Word].docx

2023新型智慧城市智慧交通专项设计方案[498页Word].docx
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

list根据id查询pid 然后依次获取到所有的子节点数据

可以使用递归的方式来实现根据id查询pid并获取所有子节点数据。具体实现可以参考以下代码: ``` def get_children_nodes(nodes, parent_id): children = [] for node in nodes: if node['pid'] == parent_id: node['children'] = get_children_nodes(nodes, node['id']) children.append(node) return children # 测试数
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

未定义标识符CFileFind

CFileFind 是MFC(Microsoft Foundation Class)中的一个类,用于在Windows文件系统中搜索文件和目录。如果你在使用CFileFind时出现了“未定义标识符”的错误,可能是因为你没有包含MFC头文件或者没有链接MFC库。你可以检查一下你的代码中是否包含了以下头文件: ```cpp #include <afx.h> ``` 另外,如果你在使用Visual Studio开发,还需要在项目属性中将“使用MFC”设置为“使用MFC的共享DLL”。这样才能正确链接MFC库。