我知道这个类的定义是:class SelfAttention(nn.Module): def init(self, in_channels, reduction=4): super(SelfAttention, self).init() self.avg_pool = nn.AdaptiveAvgPool1d(1) self.fc1 = nn.Conv1d(in_channels, in_channels // reduction, 1, bias=False) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv1d(in_channels // reduction, in_channels, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): b, c, n = x.size() y = self.avg_pool(x) y = self.fc1(y) y = self.relu(y) y = self.fc2(y) y = self.sigmoid(y) return x * y.expand_as(x),那么SelfAttention(channel_out)这个语句的作用是什么?
时间: 2023-07-15 11:12:34 浏览: 157
PAPR.rar_PAPR_in_ofdm papr_ofdm papr reduction_papr reduction
5星 · 资源好评率100%
这个语句的作用是创建一个SelfAttention模块的实例,其中输入参数channel_out是指SelfAttention模块的输出通道数。实例化后,可以将其作为一个层来添加到神经网络中,以增强模型对输入数据的理解和表达能力。例如:
```
import torch.nn as nn
sa = SelfAttention(channel_out=64)
model = nn.Sequential(
nn.Conv1d(3, 32, kernel_size=3),
nn.ReLU(),
nn.Conv1d(32, 64, kernel_size=3),
nn.ReLU(),
sa,
nn.Conv1d(64, 128, kernel_size=3),
nn.ReLU(),
nn.Conv1d(128, 10, kernel_size=3),
nn.Flatten()
)
```
在这个例子中,SelfAttention模块被添加到了模型的第四层,它可以使模型更好地理解输入数据,提升模型的性能。
阅读全文