这几我所加的注意力机制模块:class SelfAttention(nn.Module): def __init__(self, in_channels, reduction=4): super(SelfAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool1d(1) self.fc1 = nn.Conv1d(in_channels, in_channels // reduction, 1, bias=False) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv1d(in_channels // reduction, in_channels, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): # print("x=", x) b, c, n = x.size() y = self.avg_pool(x) y = self.fc1(y) y = self.relu(y) y = self.fc2(y) y = self.sigmoid(y) return x * y.expand_as(x),然后运行训练程序时报错:File "/root/autodl-tmp/project/tools/../lib/net/pointnet2_msg.py", line 91, in forward y = self.fc1(y) File "/root/miniconda3/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "/root/miniconda3/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 258, in forward return F.conv1d(input, self.weight, self.bias, self.stride, RuntimeError: Given groups=1, weight of size [256, 1024, 1], expected input[16, 512, 1] to have 1024 channels, but got 512 channels instead你知道是为什么吗,我该如何解决?请提供详细的解决代码
时间: 2023-07-15 22:15:40 浏览: 157
大白话注意力机制-Attention
根据报错信息,可以看出是输入的通道数不匹配导致的错误。你的代码中,输入的张量形状为 `[batch_size, in_channels, num_points]`,其中 `in_channels` 表示输入特征的通道数,而第一个全连接层 `fc1` 的输出通道数是 `in_channels // reduction`,也就是输入通道数的四分之一。所以在第二个全连接层 `fc2` 中,输出通道数应该是 `in_channels` 而不是 `in_channels // reduction`。
下面是修改后的代码:
```python
class SelfAttention(nn.Module):
def __init__(self, in_channels, reduction=4):
super(SelfAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool1d(1)
self.fc1 = nn.Conv1d(in_channels, in_channels // reduction, 1, bias=False)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Conv1d(in_channels // reduction, in_channels, 1, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
b, c, n = x.size()
y = self.avg_pool(x)
y = self.fc1(y)
y = self.relu(y)
y = self.fc2(y)
y = self.sigmoid(y)
return x * y.expand_as(x)
```
另外,如果你的输入张量是二维的,可以考虑使用 `nn.MultiheadAttention`,这是 PyTorch 内置的多头注意力机制模块。使用它可以更方便地实现注意力机制。
以下是使用 `nn.MultiheadAttention` 实现的代码:
```python
class SelfAttention(nn.Module):
def __init__(self, in_channels, num_heads=8):
super(SelfAttention, self).__init__()
self.num_heads = num_heads
self.multihead_attn = nn.MultiheadAttention(in_channels, num_heads)
self.layer_norm = nn.LayerNorm(in_channels)
def forward(self, x):
# x: [batch_size, seq_len, in_channels]
residual = x
x = x.permute(1, 0, 2) # [seq_len, batch_size, in_channels]
x, _ = self.multihead_attn(x, x, x)
x = x.permute(1, 0, 2) # [batch_size, seq_len, in_channels]
x = self.layer_norm(residual + x)
return x
```
阅读全文