class Attention(torch.nn.Module): def __init__(self, in_features, out_features): super(Attention, self).__init__() self.lin1 = torch.nn.Linear(in_features, out_features) self.lin2 = torch.nn.Linear(out_features, 1) def forward(self, x): x = F.relu(self.lin1(x)) x = self.lin2(x) return torch.softmax(x, dim=0).view(-1, 1)这段代码是什么样的注意力机制的代码
时间: 2023-06-13 09:06:48 浏览: 193
best_cityscapes_checkpoint.pth.txt
这段代码实现的是一种简单的注意力机制,又称为全局注意力。它的输入是一个张量x,经过两层全连接层后输出一个标量,再经过softmax函数将其转换为注意力分布。这个注意力分布可以应用于输入张量的每个元素,以加权其重要性。具体来说,对于输入张量x,注意力分布的大小与x的每个元素相关,大的元素对应的注意力分布大,小的元素对应的注意力分布小。最终,输出是加权平均值,即x的每个元素乘以对应的注意力分布,再求和。
阅读全文