def forward(self, pointcloud: torch.cuda.FloatTensor): xyz, features = self._break_up_pc(pointcloud) l_xyz, l_features = [xyz], [features] for i in range(len(self.SA_modules)): li_xyz, li_features = self.SA_modules[i][0](l_xyz[i], l_features[i]) l_xyz.append(li_xyz) l_features.append(li_features) l_features[i] = self.SA_modules[i][1](l_features[i]) #SelfAttention模块需要传入的参数为输入特征向量l_features[i] for i in range(-1, -(len(self.FP_modules) + 1), -1): l_features[i - 1] = self.FP_modules[i]( l_xyz[i - 1], l_xyz[i], l_features[i - 1], l_features[i] ) return l_xyz[0], l_features[0]根据以上代码,为什么self.SA_modules[i][1](l_features[i])中的l_features[i]被传入模块后被提示为空,我该如何解决,你可以提供详细的代码吗?
时间: 2023-06-27 08:07:47 浏览: 78
torch.cuda.is_available()返回False解决方案
5星 · 资源好评率100%
根据代码,`self.SA_modules` 是一个包含了多个模块的列表,每个模块包含两个子模块,分别是 `PointNetSetAbstractionMsg` 和 `PointNetSelfAttention`.
在代码中,`l_features[i]` 是被传入 `PointNetSetAbstractionMsg` 模块中的,而 `self.SA_modules[i][1]` 是指的 `PointNetSelfAttention` 模块,因此报错提示 `l_features[i]` 为空。
为了解决这个问题,你需要确保 `PointNetSetAbstractionMsg` 模块返回的特征向量 `li_features` 不为空,并且在 `PointNetSelfAttention` 模块中正确地使用了该特征向量。你可以检查一下 `PointNetSetAbstractionMsg` 模块的代码,看看是否正确地返回了特征向量。
关于详细的代码,因为缺少了一些必要的信息,我无法提供完整的代码,但你可以参考以下代码来检查 `PointNetSetAbstractionMsg` 模块的实现是否正确:
```
class PointNetSetAbstractionMsg(nn.Module):
def __init__(self, npoint, radii, nsamples, in_channel, mlp, group_all):
super(PointNetSetAbstractionMsg, self).__init__()
self.npoint = npoint
self.radii = radii
self.nsamples = nsamples
self.group_all = group_all
if group_all:
self.mlp_convs = nn.Sequential(
nn.Conv1d(in_channel, mlp[0], 1),
nn.BatchNorm1d(mlp[0]),
nn.ReLU(),
nn.Conv1d(mlp[0], mlp[1], 1),
nn.BatchNorm1d(mlp[1]),
nn.ReLU(),
nn.Conv1d(mlp[1], mlp[2], 1),
nn.BatchNorm1d(mlp[2]),
nn.ReLU()
)
else:
self.mlp_convs = nn.Sequential(
nn.Conv2d(in_channel, mlp[0], 1),
nn.BatchNorm2d(mlp[0]),
nn.ReLU(),
nn.Conv2d(mlp[0], mlp[1], 1),
nn.BatchNorm2d(mlp[1]),
nn.ReLU(),
nn.Conv2d(mlp[1], mlp[2], 1),
nn.BatchNorm2d(mlp[2]),
nn.ReLU()
)
self.sa_module = PointNetSetAbstraction(npoint, radii, nsamples, in_channel, mlp)
def forward(self, xyz, points):
new_xyz, idx = query_ball_point(self.radii, self.nsamples, xyz, xyz)
grouped_points = group_point(points, idx)
if self.group_all:
new_points = self.mlp_convs(grouped_points)
new_points = torch.max(new_points, 2)[0]
else:
new_points = self.mlp_convs(grouped_points.permute(0, 3, 1, 2))
new_points = torch.max(new_points, 3)[0]
new_xyz = new_xyz.permute(0, 2, 1)
new_points = torch.cat([new_points, new_xyz], 1)
new_points = self.sa_module(new_xyz, new_points)
return new_xyz.transpose(1, 2).contiguous(), new_points
```
希望能对你有所帮助!
阅读全文