class R_NN(nn.Module): def __init__(self, in_dim, n_class): super(R_NN, self).__init__() self.logstic = nn.Linear(in_dim, n_class) self.predict=nn.Sigmoid() def forward(self, x): out = self.logstic(x) out = out.squeeze(1) #降维 return out
时间: 2023-06-08 11:05:27 浏览: 193
这段代码是一个定制化的PyTorch神经网络模块。该模块名为R_NN,有两个输入参数:in_dim表示输入数据的维度,n_class表示分类的数量。在初始化函数中,调用了super()函数来获得父类nn.Module的属性和方法,然后定义了一个线性层(logstic)和一个Sigmoid层(predict)。在前向传播函数forward()中,对输入数据x进行线性变换,再使用squeeze()函数将一维的输出向量压缩为一个标量。
相关问题
class RotatE_AutoNeg(nn.Module): def __init__(self, nentity, nrelation, hidden_dim, gamma): super(RotatE_AutoNeg, self).__init__() self.nentity = nentity self.nrelation = nrelation self.hidden_dim = hidden_dim self.gamma = gamma self.embedding_range = nn.Parameter( torch.Tensor([(self.gamma + 2.0) / (self.hidden_dim * 2)]), requires_grad=False) # 计算初始化范围 self.entity_emb = nn.Embedding(self.nentity, self.hidden_dim) # 设置维度 self.relation_emb = nn.Parameter(torch.Tensor(self.nrelation, self.hidden_dim)) # 实体初始化,服从(a,b)的均匀分布 nn.init.uniform_( tensor=self.entity_emb.weight.data, a=-self.embedding_range.item(), b=self.embedding_range.item() ) # 关系初始化,服从(a,b)的均匀分布 nn.init.uniform_( tensor=self.relation_emb.data, a=-self.embedding_range.item(), b=self.embedding_range.item() )解释
这是一个基于PyTorch的RotatE_AutoNeg模型的定义。具体来说,这个模型包含以下几个部分:
- nentity:知识图谱中实体的数量
- nrelation:知识图谱中关系的数量
- hidden_dim:实体和关系向量的维度
- gamma:损失函数中的超参数
- embedding_range:初始化向量的范围
- entity_emb:实体嵌入矩阵,用于将实体映射到向量空间
- relation_emb:关系嵌入矩阵,用于将关系映射到向量空间
具体地,这个模型使用了PyTorch中的Embedding层来初始化实体向量,使用了Tensor对象来初始化关系向量。在初始化时,实体向量服从(a,b)的均匀分布,其中a和b分别为负的embedding_range.item()和正的embedding_range.item()。关系向量同理。通过这种初始化方式,可以将实体和关系向量随机初始化在一个较小的范围内,从而可以更容易地收敛到最优解。
class NormedLinear(nn.Module): def __init__(self, feat_dim, num_classes): super().__init__() self.weight = nn.Parameter(torch.Tensor(feat_dim, num_classes)) self.weight.data.uniform_(-1, 1).renorm_(2, 1, 1e-5).mul_(1e5) def forward(self, x): return F.normalize(x, dim=1).mm(F.normalize(self.weight, dim=0)) class LearnableWeightScalingLinear(nn.Module): def __init__(self, feat_dim, num_classes, use_norm=False): super().__init__() self.classifier = NormedLinear(feat_dim, num_classes) if use_norm else nn.Linear(feat_dim, num_classes) self.learned_norm = nn.Parameter(torch.ones(1, num_classes)) def forward(self, x): return self.classifier(x) * self.learned_norm class DisAlignLinear(nn.Module): def __init__(self, feat_dim, num_classes, use_norm=False): super().__init__() self.classifier = NormedLinear(feat_dim, num_classes) if use_norm else nn.Linear(feat_dim, num_classes) self.learned_magnitude = nn.Parameter(torch.ones(1, num_classes)) self.learned_margin = nn.Parameter(torch.zeros(1, num_classes)) self.confidence_layer = nn.Linear(feat_dim, 1) torch.nn.init.constant_(self.confidence_layer.weight, 0.1) def forward(self, x): output = self.classifier(x) confidence = self.confidence_layer(x).sigmoid() return (1 + confidence * self.learned_magnitude) * output + confidence * self.learned_margin class MLP_ConClassfier(nn.Module): def __init__(self): super(MLP_ConClassfier, self).__init__() self.num_inputs, self.num_hiddens_1, self.num_hiddens_2, self.num_hiddens_3, self.num_outputs \ = 41, 512, 128, 32, 5 self.num_proj_hidden = 32 self.mlp_conclassfier = nn.Sequential( nn.Linear(self.num_inputs, self.num_hiddens_1), nn.ReLU(), nn.Linear(self.num_hiddens_1, self.num_hiddens_2), nn.ReLU(), nn.Linear(self.num_hiddens_2, self.num_hiddens_3), ) self.fc1 = torch.nn.Linear(self.num_hiddens_3, self.num_proj_hidden) self.fc2 = torch.nn.Linear(self.num_proj_hidden, self.num_hiddens_3) self.linearclassfier = nn.Linear(self.num_hiddens_3, self.num_outputs) self.NormedLinearclassfier = NormedLinear(feat_dim=self.num_hiddens_3, num_classes=self.num_outputs) self.DisAlignLinearclassfier = DisAlignLinear(feat_dim=self.num_hiddens_3, num_classes=self.num_outputs, use_norm=True) self.LearnableWeightScalingLinearclassfier = LearnableWeightScalingLinear(feat_dim=self.num_hiddens_3, num_classes=self.num_outputs, use_norm=True)
这段代码定义了一个名为MLP_ConClassfier的神经网络模型,它包含了多个子模块,包括三个不同的分类器:NormedLinearclassfier、DisAlignLinearclassfier和LearnableWeightScalingLinearclassfier。这些分类器都是基于输入特征进行分类的,并且使用不同的方法来实现分类功能。此外,该模型还包含了一个MLP网络,用于将输入特征映射到更高维的特征空间中。该模型的输入特征维度为41,输出类别数为5。
阅读全文