补全以下代码class LeNet(paddle.nn.Layer): def __init__(self):
时间: 2024-05-24 18:15:08 浏览: 162
class LeNet(paddle.nn.Layer):
def __init__(self):
super(LeNet, self).__init__()
# 定义第一个卷积层,输入通道数为1,输出通道数为6,卷积核大小为5*5
self.conv1 = paddle.nn.Conv2D(in_channels=1, out_channels=6, kernel_size=5)
# 定义第二个卷积层,输入通道数为6,输出通道数为16,卷积核大小为5*5
self.conv2 = paddle.nn.Conv2D(in_channels=6, out_channels=16, kernel_size=5)
# 定义第三个全连接层,输入神经元个数为16*5*5,输出神经元个数为120
self.fc1 = paddle.nn.Linear(in_features=16*5*5, out_features=120)
# 定义第四个全连接层,输入神经元个数为120,输出神经元个数为84
self.fc2 = paddle.nn.Linear(in_features=120, out_features=84)
# 定义第五个全连接层,输入神经元个数为84,输出神经元个数为10
self.fc3 = paddle.nn.Linear(in_features=84, out_features=10)
def forward(self, x):
# 卷积层->激活函数->池化层
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, kernel_size=2, stride=2)
# 卷积层->激活函数->池化层
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, kernel_size=2, stride=2)
# 将tensor展开成一维的
x = paddle.flatten(x, start_axis=1, stop_axis=-1)
# 三个全连接层->激活函数
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x