class GoogLeNet(paddle.nn.Layer): def __init__(self): super().__init__() self.b1=paddle.nn.Sequential(paddle.nn.Conv2D(in_channels=3,out_channels=64,kernel_size=7,stride=2,padding="same"), #补充 paddle.nn.ReLU(), paddle.nn.MaxPool2D(kernel_size=3,stride=2,padding="same") ) self.b2=paddle.nn.Sequential( paddle.nn.Conv2D(in_channels=64,out_channels=64,kernel_size=1,padding="valid"), paddle.nn.ReLU(), paddle.nn.Conv2D(in_channels=64,out_channels=192,kernel_size=3,padding="same"), paddle.nn.ReLU(), paddle.nn.MaxPool2D(kernel_size=3,stride=2,padding="same") ) self.b3=paddle.nn.Sequential( Inception(192,64,(96,128),(16,32),32), Inception(256,128,(128,192),(32,96),64), paddle.nn.MaxPool2D(kernel_size=3,stride=2,padding="same") ) self.b4=paddle.nn.Sequential( Inception(480,192,(96,208),(16,48),64), Inception(512,160,(112,224),(24,64),64), Inception(512,128,(128,256),(24,64),64), Inception(512,112,(144,288),(32,64),64), Inception(528,256,(160,320),(32,128),128), paddle.nn.MaxPool2D(kernel_size=3,stride=2,padding="same") ) self.b5=paddle.nn.Sequential( Inception(832,256,(160,320),(32,128),128), Inception(832,384,(192,384),(48,128),128), paddle.nn.MaxPool2D(kernel_size=7,stride=1,padding="same") ) self.b6=paddle.nn.Sequential( paddle.nn.Flatten(), paddle.nn.Dropout(p=0.4), paddle.nn.Linear(in_features=1024*7*7,out_features=17) ) def forward(self,x): #补充 x=self.b1(x) x=self.b2(x) x=self.b3(x) x=self.b4(x) x=self.b5(x) x=self.b6(x) return x google=GoogLeNet()#创建网络对象 paddle.summary(google,(1,3,224,224))#显示网络结构信息 这段代码中如何去看输出层神经元个数
时间: 2023-09-18 21:10:23 浏览: 97
在这段代码中,我们可以看到输出层的神经元个数是通过定义网络模型时的`paddle.nn.Linear`层的`out_features`参数指定的。在这个例子中,输出层的神经元个数为17,即分类的种数:
```python
paddle.nn.Linear(in_features=1024*7*7,out_features=17)
```
此外,我们还可以使用`paddle.summary`函数来查看网络模型的详细结构信息,包括每一层的输入输出形状和参数数量。这个函数的第一个参数是网络模型对象,第二个参数是输入数据的形状。在这个例子中,我们可以通过以下方式查看网络模型结构信息:
```python
google = GoogLeNet()
paddle.summary(google, (1, 3, 224, 224))
```
这个函数的输出中包含了每一层的名称、类型、输入输出形状和参数数量等信息,可以帮助我们更好地了解网络模型的结构和参数情况。
相关问题
补全以下代码class LeNet(paddle.nn.Layer): def __init__(self): super(LeNet, self).__init__() return x
class LeNet(paddle.nn.Layer):
def __init__(self):
super(LeNet, self).__init__()
self.conv1 = paddle.nn.Conv2D(in_channels=1, out_channels=6, kernel_size=5, stride=1, padding=2)
self.max_pool1 = paddle.nn.MaxPool2D(kernel_size=2, stride=2)
self.conv2 = paddle.nn.Conv2D(in_channels=6, out_channels=16, kernel_size=5, stride=1)
self.max_pool2 = paddle.nn.MaxPool2D(kernel_size=2, stride=2)
self.fc1 = paddle.nn.Linear(in_features=16*5*5, out_features=120)
self.fc2 = paddle.nn.Linear(in_features=120, out_features=84)
self.fc3 = paddle.nn.Linear(in_features=84, out_features=10)
def forward(self, x):
x = self.conv1(x)
x = paddle.nn.functional.relu(x)
x = self.max_pool1(x)
x = self.conv2(x)
x = paddle.nn.functional.relu(x)
x = self.max_pool2(x)
x = paddle.reshape(x, [x.shape[0], -1])
x = self.fc1(x)
x = paddle.nn.functional.relu(x)
x = self.fc2(x)
x = paddle.nn.functional.relu(x)
x = self.fc3(x)
return x
补全以下代码class LeNet(paddle.nn.Layer): def __init__(self):
class LeNet(paddle.nn.Layer):
def __init__(self):
super(LeNet, self).__init__()
# 定义第一个卷积层,输入通道数为1,输出通道数为6,卷积核大小为5*5
self.conv1 = paddle.nn.Conv2D(in_channels=1, out_channels=6, kernel_size=5)
# 定义第二个卷积层,输入通道数为6,输出通道数为16,卷积核大小为5*5
self.conv2 = paddle.nn.Conv2D(in_channels=6, out_channels=16, kernel_size=5)
# 定义第三个全连接层,输入神经元个数为16*5*5,输出神经元个数为120
self.fc1 = paddle.nn.Linear(in_features=16*5*5, out_features=120)
# 定义第四个全连接层,输入神经元个数为120,输出神经元个数为84
self.fc2 = paddle.nn.Linear(in_features=120, out_features=84)
# 定义第五个全连接层,输入神经元个数为84,输出神经元个数为10
self.fc3 = paddle.nn.Linear(in_features=84, out_features=10)
def forward(self, x):
# 卷积层->激活函数->池化层
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, kernel_size=2, stride=2)
# 卷积层->激活函数->池化层
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, kernel_size=2, stride=2)
# 将tensor展开成一维的
x = paddle.flatten(x, start_axis=1, stop_axis=-1)
# 三个全连接层->激活函数
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
阅读全文