梯级水库动态规划调度代码python
时间: 2024-04-03 12:29:17 浏览: 232
根据提供的引用内容,我找到了两种与梯级水库动态规划调度相关的Python代码实现。请参考以下两种方法:
方法一:基于粒子群算法的梯级水火电力优化调度研究[^1]
```python
# 导入所需的库
import numpy as np
# 定义粒子群算法类
class PSO:
def __init__(self, n, dim, max_iter):
self.n = n # 粒子数量
self.dim = dim # 粒子维度
self.max_iter = max_iter # 最大迭代次数
self.c1 = 2 # 学习因子1
self.c2 = 2 # 学习因子2
self.w = 0.8 # 惯性权重
self.X = np.random.uniform(0, 1, (n, dim)) # 粒子位置
self.V = np.random.uniform(0, 1, (n, dim)) # 粒子速度
self.pbest = self.X.copy() # 个体最优位置
self.gbest = self.pbest[np.argmax(self.fitness(self.pbest))] # 全局最优位置
# 适应度函数
def fitness(self, X):
return np.sum(X, axis=1)
# 更新粒子位置和速度
def update(self):
for i in range(self.n):
r1 = np.random.uniform(0, 1, self.dim)
r2 = np.random.uniform(0, 1, self.dim)
self.V[i] = self.w * self.V[i] + self.c1 * r1 * (self.pbest[i] - self.X[i]) + self.c2 * r2 * (self.gbest - self.X[i])
self.X[i] = self.X[i] + self.V[i]
self.X[i] = np.clip(self.X[i], 0, 1)
if self.fitness(self.X[i]) > self.fitness(self.pbest[i]):
self.pbest[i] = self.X[i]
if self.fitness(self.pbest[i]) > self.fitness(self.gbest):
self.gbest = self.pbest[i]
# 粒子群算法主函数
def optimize(self):
for _ in range(self.max_iter):
self.update()
return self.gbest
# 示例调用
pso = PSO(n=10, dim=5, max_iter=100)
gbest = pso.optimize()
print("最优解:", gbest)
```
方法二:基于动态规划的水库优化调度[^2]
```python
# 导入所需的库
import numpy as np
# 定义动态规划函数
def dynamic_programming(V, C, R):
n = len(V) # 阶段数
m = len(V[0]) # 状态数
dp = np.zeros((n, m)) # 动态规划表
path = np.zeros((n, m), dtype=int) # 最优路径表
# 初始化第一阶段
for i in range(m):
dp[0][i] = V[0][i]
# 动态规划过程
for i in range(1, n):
for j in range(m):
max_value = -np.inf
max_index = -1
for k in range(m):
value = dp[i-1][k] + C[i][j] - R[i][j][k]
if value > max_value:
max_value = value
max_index = k
dp[i][j] = max_value
path[i][j] = max_index
# 回溯最优路径
optimal_path = []
optimal_path.append(np.argmax(dp[-1]))
for i in range(n-1, 0, -1):
optimal_path.append(path[i][optimal_path[-1]])
return dp[-1][-1], optimal_path[::-1]
# 示例调用
V = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] # 状态变量
C = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] # 成本
R = [[[1, 2, 3], [4, 5, 6], [7, 8, 9]], [[1, 2, 3], [4, 5, 6], [7, 8, 9]], [[1, 2, 3], [4, 5, 6], [7, 8, 9]]] # 收益
max_value, optimal_path = dynamic_programming(V, C, R)
print("最大值:", max_value)
print("最优路径:", optimal_path)
```
阅读全文