BMS 算法设计和验证

时间: 2023-08-22 20:07:25 浏览: 50
BMS(电池管理系统)算法设计和验证是为了确保电池的性能和安全而进行的关键步骤。BMS算法设计涉及到以下几个方面: 1. 电池参数估计:BMS需要准确估计电池的容量、内阻、开路电压等参数,以便进行状态估计和预测。 2. 状态估计和预测:BMS需要通过观测电池的电流、电压和温度等信息来估计电池的状态,如电量、剩余寿命、SOC(State of Charge)等,并预测电池未来的状态。 3. 充放电控制:BMS需要根据电池的状态和应用需求,设计充放电控制策略,如充电截止电压、放电截止电压、充电速率、放电速率等。 4. 故障检测和保护:BMS需要设计故障检测和保护策略,以确保电池在异常情况下能够安全运行,如过充、过放、过温等故障的检测和处理。 验证BMS算法的过程通常包括以下几个方面: 1. 硬件验证:将BMS算法与实际的硬件系统进行连接,通过实验和测试来验证算法的正确性和可靠性。 2. 环境测试:在不同的环境条件下对BMS算法进行测试,如温度变化、湿度变化、震动等。 3. 效能测试:对BMS算法进行效能测试,评估其在不同工况下的性能,如充电速率、放电速率、SOC估计精度等。 4. 安全性测试:对BMS算法进行安全性测试,确保其能够有效地检测和处理电池的故障情况,并保护电池的安全运行。 设计和验证BMS算法的过程需要综合考虑电池的特性、应用需求和安全性要求,以确保电池能够高效、安全地工作。
相关问题

BMS自学习算法发展状态

BMS自学习算法的发展状态目前正在不断演进和探索中。虽然该领域的研究尚处于起步阶段,但已经取得了一些进展。以下是BMS自学习算法发展状态的一些方面: 1. 数据集的建立:为了训练自学习算法,需要大量的电池工作数据。目前,研究人员正在努力收集和整理各种类型的电池工作数据,包括充放电过程、环境变化、电池参数等。这些数据集的建立将为自学习算法的研究和应用提供基础。 2. 算法模型的选择:BMS自学习算法可以采用多种机器学习和深度学习算法,如神经网络、支持向量机、决策树等。研究人员正在探索不同算法模型的优劣和适用性,以找到最适合BMS的自学习算法模型。 3. 算法性能的评估:在开发BMS自学习算法时,需要对算法性能进行评估。这包括算法的准确性、鲁棒性、泛化能力等方面。研究人员通常会使用交叉验证、误差分析等方法来评估算法的性能,并与传统的BMS算法进行比较。 4. 实际应用的验证:除了在实验室中进行算法研究和评估外,BMS自学习算法还需要在实际电池系统中进行验证和应用。这需要与电池制造商、汽车制造商等合作,将自学习算法集成到实际的BMS系统中,并进行实地测试和验证。 总体而言,BMS自学习算法的发展状态还处于初级阶段,但已经吸引了越来越多的研究兴趣。未来,随着数据集的积累和算法模型的改进,BMS自学习算法有望实现更准确、可靠的电池管理,并为电池系统带来更好的性能和寿命。

基于功能安全的bms设计

基于功能安全的BMS设计是指为了确保电池管理系统(BMS)的正常运行和保护电池安全而采取的安全措施。 首先,基于功能安全的BMS设计需要进行全面的风险评估。该评估包括对电池故障、短路、过电流等可能发生的安全风险进行分析和评估。评估结果将指导设计过程中采取的安全措施。 其次,BMS设计需要采用可靠的硬件和软件结构。硬件方面,可以采用冗余设计,使用多个传感器进行数据采集,以提高系统的可靠性。软件方面,需要使用安全性验证的算法,确保数据的准确性和系统的稳定性。 另外,功能安全的BMS设计需要具备故障诊断和容错能力。设计中应包括故障检测机制,能够检测和诊断电池系统中可能出现的故障,并采取相应的措施进行修复或处理。同时,设计中还要考虑到系统的容错能力,即在故障发生时,系统应能自动切换到备用模式,保障系统的正常运行。 最后,基于功能安全的BMS设计需要进行系统验证和认证。设计完成后,需要经过严格的测试和验证,确保系统能够满足功能安全相关的标准和要求。并且,该设计还需要获得功能安全认证,以证明其符合相关的安全性标准。 总而言之,基于功能安全的BMS设计是通过风险评估、可靠的硬件和软件结构、故障诊断和容错能力以及系统验证和认证等措施来确保电池管理系统的安全运行。这样的设计能够有效地预防和降低电池系统故障对人身安全和设备完整性产生的潜在风险。

相关推荐

BMS自学习算法的发展受到一些因素的限制。以下是一些常见的限制因素: 1. 数据质量和可用性:BMS自学习算法需要大量高质量的电池工作数据进行训练和验证。然而,获取高质量的数据可能是一项挑战,因为电池工作数据往往受到限制,如采样频率、传感器精度等。此外,由于数据隐私和商业机密等原因,一些电池制造商可能不愿意共享其数据,这也限制了算法的开发和验证。 2. 算法复杂性和计算资源:BMS自学习算法通常需要大量的计算资源和算法复杂性。这对于嵌入式系统来说可能是一个挑战,因为资源受限且计算能力有限。因此,在将自学习算法应用于实际的BMS系统时,需要考虑算法的实时性、计算效率和硬件要求。 3. 样本不平衡和数据分布偏差:在电池管理系统中,不同类型的电池工作数据可能存在样本不平衡和数据分布偏差的问题。这可能导致自学习算法在某些情况下性能较差或泛化能力不足。因此,在算法开发和训练过程中,需要注意样本选择、数据预处理和算法优化等问题,以克服这些限制。 4. 算法解释性和可信度:自学习算法通常是黑盒模型,其决策过程可能难以解释和理解。在一些关键应用中,如汽车行业,需要对算法的决策过程进行解释和验证,以确保算法的可信度和安全性。因此,算法的解释性和可信度也是限制BMS自学习算法发展的一个因素。 尽管存在这些限制因素,但随着技术的进步和研究的深入,可以预期BMS自学习算法将逐渐克服这些限制,并在电池管理系统中发挥更重要的作用。
BMS(Battery Management System,电池管理系统)的功能安全一直在不断发展。随着电动车和可再生能源的快速发展,对电池系统的安全性要求越来越高。BMS作为电池系统的核心组件之一,起着监测、控制和保护电池的重要作用。 在功能安全方面,BMS需要满足ISO 26262标准的要求。ISO 26262是针对汽车电子系统的功能安全标准,其中包括了针对硬件和软件方面的要求。BMS需要通过安全分析、安全概念设计、安全验证等一系列流程来确保其功能的安全性。 近年来,BMS在功能安全方面的发展主要表现在以下几个方面: 1. 安全分析:BMS需要进行详尽的安全分析,包括对电池系统可能出现的故障和失效进行评估,以确定必要的安全措施。 2. 安全概念设计:基于安全分析的结果,BMS需要设计相应的安全控制策略和算法,确保在故障情况下能够及时检测并采取适当的措施保护电池。 3. 安全验证:BMS需要进行各种验证活动,包括功能测试、可靠性测试和安全性验证等,以确保其在各种场景下的功能安全性。 4. 硬件和软件安全:BMS的硬件和软件部分都需要满足相应的安全要求。硬件方面需要考虑电路的可靠性和防护措施,软件方面需要进行严格的安全编码和测试。 总体来说,BMS的功能安全发展较为成熟,但随着技术的不断进步和对电池系统安全性要求的提高,BMS功能安全仍然是一个不断发展和完善的领域。
BMS(电池管理系统)软硬件开发流程通常包括以下几个阶段: 1. 需求分析阶段:在这个阶段,我们需要与客户沟通,了解他们的具体需求和目标。根据客户提供的需求规格书或者需求文档,我们可以开始制定BMS软硬件开发的计划和目标。 2. 系统设计阶段:在这个阶段,我们通过系统分析和设计来定义BMS的整体结构和功能。通过分解需求,我们可以确定软硬件组件的功能模块和接口,以及设计相应的算法和逻辑来实现系统功能。 3. 硬件开发阶段:在这个阶段,我们可以进行电路设计和布板,选择适合的电子元器件,并进行原理图设计和PCB布局。然后,我们可以进行电路板的制造和组装,并进行相应的测试来验证硬件的性能和可靠性。 4. 软件开发阶段:在这个阶段,我们可以使用C语言或其他编程语言来编写BMS的软件。通过分析需求,在软件层面上实现电池状态监测、充放电控制、故障诊断等功能。软件开发完成后,我们需要进行相应的单元测试和集成测试来验证软件的正确性和稳定性。 5. 集成测试阶段:在这个阶段,我们将硬件和软件进行集成测试,以确保它们可以正确地协同工作。集成测试涉及到整个系统的功能验证、性能测试和系统验收。 6. 验收阶段:在这个阶段,我们与客户一起进行系统验收测试,以确保BMS在客户的应用场景中可以正常运行并满足客户的需求。根据客户的反馈,我们可能需要对系统进行调整和优化。 总之,BMS软硬件开发流程涵盖了需求分析、系统设计、硬件开发、软件开发、集成测试和验收等多个步骤。通过这些步骤的有机衔接,我们可以确保BMS的功能和性能能够符合客户的期望,并为客户提供高质量的产品和解决方案。
### 回答1: BMS主控逻辑代码生成是指通过编程语言和编译器等工具,将BMS控制逻辑的要求转换为可以被计算机执行的二进制指令代码,并且将其存储在BMS主控芯片上。这个过程需要根据BMS系统的运行流程、硬件组成以及传感器和执行器的通信协议等因素,进行代码设计和编写。 首先,为了确保代码的可靠性和稳定性,需要有严格的质量标准和测试流程。其中包括工程化设计,多层次测试和严格的验收标准等。在代码设计的过程中,需要根据BMS控制逻辑和各个模块之间的交互,构建功能模块和算法模块等,以保证系统的协调运行。各模块之间的接口设计应该符合开放、通用、易扩展的原则。 其次,在代码生成的过程中,需要考虑主控芯片的特性和性能需求,以及硬件电路图的要求和布线规则。同时,还需要根据硬件配置和传感器检测结果等信息,对代码进行优化和调试。 最后,针对BMS的使用场景和用户需求,还需要考虑代码的可扩展性和易用性。在代码的编写过程中,需要将用户需求和使用场景考虑在内,让BMS系统更符合用户的预期,并且可处理更多的应用场景和业务需求。 综上所述,BMS主控逻辑代码生成是一个复杂的过程,需要考虑多个因素。只有有经验的工程师能够准确地理解系统的需求和优化,提高代码的可靠性和性能。 ### 回答2: BMS主控逻辑代码是指用于控制电池管理系统的核心代码。通常情况下,它涉及到许多复杂的计算和算法,包括充电、放电、温度管理以及状态监测等。为了生成BMS主控逻辑代码,需要进行如下步骤: 首先,需要确定整个电池管理系统的架构。这会涉及到硬件设备的选择,如传感器、控制器等。还需要根据不同电池组的需求,来确定不同控制策略的具体场景,比如恒压充电、恒流放电、过流保护等。 其次,需要通过软件编程语言来实现上述策略。常见的编程语言有C、C++、Python等,需要根据需求选择合适的语言,并进行代码实现。需要注意的是,由于BMS主控逻辑代码通常会涉及到电路、电子元件等专业领域的知识,因此在编写代码之前,需要具有一定的专业知识和技能。 最后,需要进行代码测试和调试。这是确保代码的安全性和可靠性的关键步骤,因为任何代码缺陷都可能导致电池管理系统的故障。因此,测试和调试应该始终与实际测试和模拟环境相结合,以识别并解决任何可能存在的问题。 总而言之,BMS主控逻辑代码生成是一个涉及硬件和软件的复杂过程,需要深入了解电池管理系统的场景和需求,以及代码编写和调试的技能和经验。 ### 回答3: BMS主控逻辑代码生成是指通过编程语言将BMS控制器的算法逻辑转换为可执行的机器码,以实现对电池系统的实时控制和监测。通常,BMS主控逻辑代码生成需要依据BMS系统的工作要求、硬件平台和通讯协议等相关规范进行开发。开发人员需要掌握相关领域的知识和技能,具备丰富的编程经验,能够理解电池系统的工作原理和控制策略。同时,BMS主控逻辑代码生成也需要针对具体的控制要求进行调试和验证。在开发过程中,需要进行测试和验证,优化代码结构和算法逻辑,确保程序的可靠性和稳定性。最终,生成的主控逻辑代码需要满足BMS系统的实时性、高精度和可靠性要求。此外,BMS主控逻辑代码的生成还需要考虑安全性问题,如保护措施和异常处理,以确保电池系统的安全运行。总之,BMS主控逻辑代码生成是一项复杂的技术工作,要求开发人员具备专业的技术能力和严密的工作态度。
电池管理系统(BMS)是一种用于监控和管理电池的系统,其主要功能包括电池状态监测、电池保护、电池数据采集和存储等。BMS开发是指对这个系统进行设计和实现的过程。 BMS的开发可以分为多个步骤。首先,需要进行需求分析,明确系统的功能和性能要求。这涉及到对不同种类电池的特征和工作原理的了解,以及用户的具体需求和使用场景。然后,根据需求分析的结果,设计系统的架构和组件,确定数据采集和处理的流程,以及与其他设备或系统的接口。接着,进行软件开发,编写代码来实现系统的各个功能。在开发过程中,需要考虑系统的可靠性、稳定性和安全性,以及对电池进行保护和优化管理的算法。最后,进行系统的测试和调试,验证系统是否按照需求进行了正确的实现。 BMS的开发需要涉及多个专业领域的知识,包括电池技术、电路设计、嵌入式系统开发、数据采集和处理、网络通信等。此外,还需要对电池管理相关的标准和法规进行了解,确保系统的设计和开发符合相关要求。 BMS的开发对于电池的安全和性能至关重要。它可以实时监测电池的状态,包括温度、电压、电流、容量等,并根据需要采取相应的措施,如调节充放电电流、控制温度等,以避免电池过充、过放等问题,延长电池寿命,并确保电池的安全运行。 总之,BMS开发是一项复杂而重要的工作,它为电池的管理和使用提供了关键的支持,并在电池的性能和安全方面发挥着至关重要的作用。
数字孪生云BMS(电池管理系统)是一种基于数字孪生技术和云计算技术的电池管理系统,可以实现对电池的远程监测、故障预测和优化控制。数字孪生云BMS 的研究方向主要包括以下几个方面: 1. 数字孪生技术:数字孪生技术是数字孪生云BMS 的核心技术,通过将实际的电池系统建立成一个虚拟的数字模型,对电池进行模拟和仿真,实现远程监测和故障预测等功能。研究方向主要是在数字孪生模型的建立和优化上进行研究,提高模型的准确性和可靠性。 2. 云计算技术:利用云计算技术可以将电池数据存储在云端,并进行数据分析和处理,实现对电池状态的实时监测和分析。研究方向主要是在云计算平台的设计和优化上进行研究,提高数据处理和分析的效率和准确性。 3. 物联网技术:利用物联网技术可以将电池管理系统与其他设备进行连接,实现远程控制和联网监测。研究方向主要是在物联网技术的应用和优化上进行研究,提高系统的稳定性和可靠性。 4. 人工智能技术:利用人工智能技术可以对电池运行状态进行预测和优化,提高电池的性能和寿命。研究方向主要是在人工智能算法和模型的研究和优化上进行研究,提高预测和优化的准确性和效率。 5. 安全性技术:数字孪生云BMS 还需要具备高可靠性和安全性,可以通过加密技术和身份验证等手段保障数据的安全。研究方向主要是在系统安全性的设计和优化上进行研究,提高系统的安全性和可靠性。 综上所述,数字孪生云BMS 的研究方向主要包括数字孪生技术、云计算技术、物联网技术、人工智能技术和安全性技术等方面的研究和优化,可以实现对电池的远程监测、故障预测和优化控制,提高电池的可靠性、安全性和性能。
电池管理系统(BMS)是一种用于电池管理的技术,其作用是实时监测和管理电池的状态,以确保电池的安全和性能。在这篇文章中,我将提出针对电池管理系统的测试计划。 首先,我们需要制定一份详细的测试计划,其中应包含测试的目的、范围、方法、标准和结果分析。测试的目的是验证电池管理系统的可靠性、稳定性和安全性。测试范围应该明确涵盖BMS的整个功能组件,如传感器、计算机算法、电源等。测试方法应包括静态测试和动态测试,其中静态测试主要涵盖系统的电气特性和物理特性测试,动态测试则涵盖系统的性能和功能测试。测试标准应该符合国际标准和行业标准。结果分析应包括评估测试结果,拟定改进方案。 其次,测试人员应该熟悉测试流程和测试要求,并根据测试计划制定测试方案。在测试前需要将系统置于稳定状态,准备测试环境。在测试中,需要进行多种测试方案,如传感器测试、模块测试、电池充电和放电测试等。测试过程中应记录测试数据和异常情况,并及时处理。 最后,针对测试结果进行评估和分析,并准备出一份详细的测试报告。测试报告中应包含测试结果的详细分析、问题修复情况、测试结论和建议,以及未来改进计划。 总之,BMS测试计划应该具备全面性、系统性和可重复性,确保BMS的正常运行和长期稳定性。
### 回答1: 《电动汽车动力电池管理系统设计》是谭晓军博士撰写的一篇论文,主要讨论了电动汽车的动力电池管理系统的设计。 在这篇论文中,谭晓军首先介绍了电动汽车的发展趋势和动力电池的重要性。随着环境保护意识的增强和对石油资源的渐渐枯竭,电动汽车作为清洁能源的代表逐渐得到了广泛应用。而动力电池作为电动汽车的能量来源,其管理系统对于电动汽车的性能和安全起着至关重要的作用。 接着,谭晓军详细介绍了电动汽车动力电池管理系统的主要构成和功能。这些功能包括电池充电控制、电池状态监测、电池温度控制、电池SOC估计和BMS故障检测等。同时,谭晓军也对电动汽车动力电池管理系统的要求进行了阐述,如高效率、可靠性、安全性、可扩展性和兼容性等。 在论文的后半部分,谭晓军提出了一种电动汽车动力电池管理系统的设计方案。他通过研究和对比不同的算法和控制策略,提出了一种基于模型预测控制的电池管理系统。该系统能够通过对电池状态进行实时监测和估计,实现对电池充放电过程的优化控制,从而提高电池的使用效率和寿命。 最后,谭晓军对该设计方案进行了仿真和实验验证,并得出了一些实验结果和结论。他指出,该设计方案能够有效地提高电动汽车动力电池管理系统的性能和安全性,具有一定的实用价值和推广前景。 综上所述,谭晓军的《电动汽车动力电池管理系统设计》论文全面介绍了电动汽车动力电池管理系统的各个方面,并提出了一种基于模型预测控制的设计方案。这篇论文对于电动汽车领域的研究和应用具有重要的参考价值。 ### 回答2: 《电动汽车动力电池管理系统设计》是一篇由谭晓军撰写的PDF文档。该文档主要讨论了电动汽车动力电池管理系统的设计原理和技术。电动汽车作为一种新型的交通工具,其动力电池的性能和管理对其性能和使用寿命有着重要的影响。 文档首先介绍了电动汽车动力电池的基本概念和组成结构,包括电池单体、电池模块和电池组。随后,谭晓军详细解释了动力电池管理系统的功能和作用,包括电池状态监测、动力控制和诊断保护等。 接下来,文档详细介绍了电动汽车动力电池管理系统设计的关键技术。其中包括电池充放电管理、温度管理、电池均衡和安全保护等。通过合理设计和控制这些关键技术,可以最大程度地提高电动汽车的性能和使用寿命。 此外,文档还提及了动力电池管理系统设计中需要考虑的其他因素,例如系统的可靠性、成本和实用性。这些因素对于动力电池管理系统的设计和应用具有重要意义,需要在设计过程中全面考虑。 综上所述,《电动汽车动力电池管理系统设计》谭晓军PDF提供了一个全面且深入的关于电动汽车动力电池管理系统设计的资料。通过学习和理解这些内容,可以更好地理解和应用动力电池管理系统在电动汽车领域的重要性和作用,促进电动汽车技术和市场的发展。 ### 回答3: 《电动汽车动力电池管理系统设计》是谭晓军在pdf文档中讨论的一个课题。电动汽车动力电池管理系统的设计对于电动汽车的性能和安全至关重要。 首先,在电动汽车中,动力电池是提供驱动力的重要组成部分。谭晓军在这份文档中讨论了如何设计一个高效的动力电池管理系统,以提高电动汽车的续航里程和性能。动力电池管理系统需要包括对电池的充电和放电过程进行监控和控制,以确保电池的安全和稳定运行。 其次,谭晓军还强调了动力电池管理系统的安全性。电动汽车动力电池一旦出现故障或意外情况可能导致严重后果,如火灾等。因此,设计一个可靠的动力电池管理系统来及时检测和处理动力电池的故障是至关重要的。这包括通过电池管理系统检测电池的温度、电压、电流和容量等参数,以及监控电池组的状态和健康状况。 最后,谭晓军在文档中还探讨了如何实现动力电池的优化充电和放电控制,以最大限度地延长电池的使用寿命。优化控制可以通过提高充电效率、减少充电时间和降低电池损耗等方式实现。此外,也可以通过智能算法和数据分析来优化电池的充放电策略。 综上所述,《电动汽车动力电池管理系统设计》是谭晓军在pdf文档中研究的一个课题,主要讨论了如何设计一个高效、安全和可靠的动力电池管理系统,以提高电动汽车的性能和续航里程,并延长电池的使用寿命。这对于推动电动汽车的发展和应用具有重要意义。

最新推荐

基于DSP的自动代码生成及其在电池管理系统中的应用

根据BMS的功能和相应的算法在Simulink平台上对BMS进行了建模仿真。模型验证无误后,运用embedded target for TI C2000实现控制器的自动代码生成,并在硬件平台上对自动生成的代码进行了验证。在整个过程中软件和硬件...

ns_strings_zh.xml

ns_strings_zh.xml

库房物品统计表.xlsx

库房物品统计表.xlsx

用于全志 SOC 的微型 FEL 工具

XFEL系列,用于全志 SOC 的微型 FEL 工具。

对销售记录进行高级筛选.xlsx

对销售记录进行高级筛选.xlsx

基于51单片机的usb键盘设计与实现(1).doc

基于51单片机的usb键盘设计与实现(1).doc

"海洋环境知识提取与表示:专用导航应用体系结构建模"

对海洋环境知识提取和表示的贡献引用此版本:迪厄多娜·察查。对海洋环境知识提取和表示的贡献:提出了一个专门用于导航应用的体系结构。建模和模拟。西布列塔尼大学-布雷斯特,2014年。法语。NNT:2014BRES0118。电话:02148222HAL ID:电话:02148222https://theses.hal.science/tel-02148222提交日期:2019年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire论文/西布列塔尼大学由布列塔尼欧洲大学盖章要获得标题西布列塔尼大学博士(博士)专业:计算机科学海洋科学博士学院对海洋环境知识的提取和表示的贡献体系结构的建议专用于应用程序导航。提交人迪厄多内·察察在联合研究单位编制(EA编号3634)海军学院

react中antd组件库里有个 rangepicker 我需要默认显示的当前月1号到最后一号的数据 要求选择不同月的时候 开始时间为一号 结束时间为选定的那个月的最后一号

你可以使用 RangePicker 的 defaultValue 属性来设置默认值。具体来说,你可以使用 moment.js 库来获取当前月份和最后一天的日期,然后将它们设置为 RangePicker 的 defaultValue。当用户选择不同的月份时,你可以在 onChange 回调中获取用户选择的月份,然后使用 moment.js 计算出该月份的第一天和最后一天,更新 RangePicker 的 value 属性。 以下是示例代码: ```jsx import { useState } from 'react'; import { DatePicker } from 'antd';

基于plc的楼宇恒压供水系统学位论文.doc

基于plc的楼宇恒压供水系统学位论文.doc

"用于对齐和识别的3D模型计算机视觉与模式识别"

表示用于对齐和识别的3D模型马蒂厄·奥布里引用此版本:马蒂厄·奥布里表示用于对齐和识别的3D模型计算机视觉与模式识别[cs.CV].巴黎高等师范学校,2015年。英语NNT:2015ENSU0006。电话:01160300v2HAL Id:tel-01160300https://theses.hal.science/tel-01160300v22018年4月11日提交HAL是一个多学科的开放获取档案馆,用于存放和传播科学研究文件,无论它们是否已这些文件可能来自法国或国外的教学和研究机构,或来自公共或私人研究中心。L’archive ouverte pluridisciplinaire博士之路博士之路博士之路在获得等级时,DOCTEURDE L'ÉCOLE NORMALE SUPERIEURE博士学校ED 386:巴黎中心数学科学Discipline ou spécialité:InformatiquePrésentée et soutenue par:马蒂厄·奥布里le8 may 2015滴度表示用于对齐和识别的Unité derechercheThèse dirigée par陪审团成员équipe WILLOW(CNRS/ENS/INRIA UMR 8548)慕尼黑工业大学(TU Munich�