Create optimizers
时间: 2023-08-30 08:04:08 浏览: 99
Sure, here are the implementations of some common optimizers in Python:
1. Stochastic Gradient Descent (SGD)
```
class SGD:
def __init__(self, learning_rate):
self.learning_rate = learning_rate
def update(self, weights, gradients):
for i in range(len(weights)):
weights[i] -= self.learning_rate * gradients[i]
```
2. Momentum
```
class Momentum:
def __init__(self, learning_rate, momentum):
self.learning_rate = learning_rate
self.momentum = momentum
self.velocity = None
def update(self, weights, gradients):
if self.velocity is None:
self.velocity = [np.zeros_like(w) for w in weights]
for i in range(len(weights)):
self.velocity[i] = self.momentum * self.velocity[i] - self.learning_rate * gradients[i]
weights[i] += self.velocity[i]
```
3. Adagrad
```
class Adagrad:
def __init__(self, learning_rate, eps=1e-8):
self.learning_rate = learning_rate
self.eps = eps
self.cache = None
def update(self, weights, gradients):
if self.cache is None:
self.cache = [np.zeros_like(w) for w in weights]
for i in range(len(weights)):
self.cache[i] += gradients[i] ** 2
weights[i] -= self.learning_rate * gradients[i] / (np.sqrt(self.cache[i]) + self.eps)
```
4. Adadelta
```
class Adadelta:
def __init__(self, rho=0.95, eps=1e-6):
self.rho = rho
self.eps = eps
self.cache = None
self.delta_cache = None
def update(self, weights, gradients):
if self.cache is None:
self.cache = [np.zeros_like(w) for w in weights]
self.delta_cache = [np.zeros_like(w) for w in weights]
for i in range(len(weights)):
self.cache[i] = self.rho * self.cache[i] + (1 - self.rho) * gradients[i] ** 2
delta = np.sqrt((self.delta_cache[i] + self.eps) / (self.cache[i] + self.eps)) * gradients[i]
weights[i] -= delta
self.delta_cache[i] = self.rho * self.delta_cache[i] + (1 - self.rho) * delta ** 2
```
5. Adam
```
class Adam:
def __init__(self, learning_rate=0.001, beta1=0.9, beta2=0.999, eps=1e-8):
self.learning_rate = learning_rate
self.beta1 = beta1
self.beta2 = beta2
self.eps = eps
self.m = None
self.v = None
self.t = 0
def update(self, weights, gradients):
if self.m is None:
self.m = [np.zeros_like(w) for w in weights]
self.v = [np.zeros_like(w) for w in weights]
self.t += 1
alpha = self.learning_rate * np.sqrt(1 - self.beta2 ** self.t) / (1 - self.beta1 ** self.t)
for i in range(len(weights)):
self.m[i] = self.beta1 * self.m[i] + (1 - self.beta1) * gradients[i]
self.v[i] = self.beta2 * self.v[i] + (1 - self.beta2) * gradients[i] ** 2
weights[i] -= alpha * self.m[i] / (np.sqrt(self.v[i]) + self.eps)
```
Note that these are just basic implementations and there are many variations and improvements to these optimizers.
阅读全文