写一个基于python的人员画像算法,应用于email网络数据集
时间: 2023-06-24 13:04:08 浏览: 246
python实现用户画像
人员画像算法可以帮助我们更好地了解一个人的行为、兴趣、社交关系等方面的信息,从而对其进行更精确的分类、推荐等操作。在本文中,我们将介绍一个基于Python的人员画像算法,并将其应用于Email网络数据集。
1. 数据预处理
首先,我们需要从数据集中提取出有用的信息,并将其转换成计算机可读的格式。在这里,我们将使用一个名为"networkx"的Python库来处理网络数据集。
首先,我们需要将数据集中的每一个邮件转换成一条边,并将其存储在一个名为"edges"的列表中。同时,我们还需要将每个人的姓名转换成一个节点,并将其存储在一个名为"nodes"的列表中。
```python
import networkx as nx
def read_data(file_path):
G = nx.Graph()
nodes = []
edges = []
with open(file_path, 'r') as f:
for line in f:
if line.startswith("From:"):
sender = line.split(":")[1].strip()
if sender not in nodes:
nodes.append(sender)
elif line.startswith("To:"):
recipients = line.split(":")[1].strip().split(",")
for recipient in recipients:
if recipient.strip() not in nodes:
nodes.append(recipient.strip())
edges.append((sender, recipient.strip()))
G.add_nodes_from(nodes)
G.add_edges_from(edges)
return G
```
2. 特征提取
接下来,我们需要从网络数据集中提取出有用的特征,并将其转换成数值型数据。在这里,我们将使用一种叫做"节点中心性"的特征来表示每个节点的重要程度。节点中心性可以帮助我们找到网络中最重要的人物,从而更好地了解网络的结构。
```python
def extract_features(G):
degree_centrality = nx.degree_centrality(G)
closeness_centrality = nx.closeness_centrality(G)
betweenness_centrality = nx.betweenness_centrality(G)
eigenvector_centrality = nx.eigenvector_centrality(G)
pagerank = nx.pagerank(G)
features = []
for node in G.nodes():
feature = [degree_centrality[node],
closeness_centrality[node],
betweenness_centrality[node],
eigenvector_centrality[node],
pagerank[node]]
features.append(feature)
return features
```
3. 聚类分析
最后,我们需要将节点按照其特征进行聚类分析。在这里,我们将使用一种叫做"KMeans"的算法来将节点分为不同的群组。
```python
from sklearn.cluster import KMeans
def cluster_analysis(features, n_clusters):
kmeans = KMeans(n_clusters=n_clusters, random_state=0).fit(features)
clusters = kmeans.labels_
return clusters
```
综上所述,我们可以将以上三个步骤组合成一个完整的人员画像算法,并将其应用于Email网络数据集。
```python
import networkx as nx
from sklearn.cluster import KMeans
def read_data(file_path):
G = nx.Graph()
nodes = []
edges = []
with open(file_path, 'r') as f:
for line in f:
if line.startswith("From:"):
sender = line.split(":")[1].strip()
if sender not in nodes:
nodes.append(sender)
elif line.startswith("To:"):
recipients = line.split(":")[1].strip().split(",")
for recipient in recipients:
if recipient.strip() not in nodes:
nodes.append(recipient.strip())
edges.append((sender, recipient.strip()))
G.add_nodes_from(nodes)
G.add_edges_from(edges)
return G
def extract_features(G):
degree_centrality = nx.degree_centrality(G)
closeness_centrality = nx.closeness_centrality(G)
betweenness_centrality = nx.betweenness_centrality(G)
eigenvector_centrality = nx.eigenvector_centrality(G)
pagerank = nx.pagerank(G)
features = []
for node in G.nodes():
feature = [degree_centrality[node],
closeness_centrality[node],
betweenness_centrality[node],
eigenvector_centrality[node],
pagerank[node]]
features.append(feature)
return features
def cluster_analysis(features, n_clusters):
kmeans = KMeans(n_clusters=n_clusters, random_state=0).fit(features)
clusters = kmeans.labels_
return clusters
if __name__ == "__main__":
file_path = "email_network.txt"
G = read_data(file_path)
features = extract_features(G)
n_clusters = 5
clusters = cluster_analysis(features, n_clusters)
print("Clusters:", clusters)
```
在运行以上代码之后,我们可以得到Email网络数据集中每个人所属的群组。这些群组可以帮助我们更好地了解Email网络中的结构,并从中发现一些有趣的规律。
阅读全文