启动flume时报错Info: Including Hadoop libraries found via (/opt/software/hadoop-2.8.3/bin/hadoop) for HDFS access Info: Including Hive libraries found via () for Hive access + exec /opt/jdk1.8.0_261/bin/java -Xmx20m -cp '/opt/software/flume-1.8.0/conf:/opt/software/flume-1.8.0/lib/*:/opt/software/hadoop-2.8.3/etc/hadoop:/opt/software/hadoop-2.8.3/share/hadoop/common/lib/*:/opt/software/hadoop-2.8.3/share/hadoop/common/*:/opt/software/hadoop-2.8.3/share/hadoop/hdfs:/opt/software/hadoop-2.8.3/share/hadoop/hdfs/lib/*:/opt/software/hadoop-2.8.3/share/hadoop/hdfs/*:/opt/software/hadoop-2.8.3/share/hadoop/yarn/lib/*:/opt/software/hadoop-2.8.3/share/hadoop/yarn/*:/opt/software/hadoop-2.8.3/share/hadoop/mapreduce/lib/*:/opt/software/hadoop-2.8.3/share/hadoop/mapreduce/*:/contrib/capacity-scheduler/*.jar:/lib/*' -Djava.library.path=:/opt/software/hadoop-2.8.3/lib/native org.apache.flume.node.Application --conf-file /opt/software/flume-1.8.0/conf/hdfs.conf --name agent1 Dflume.root.logger=DEBUG,console SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/opt/software/flume-1.8.0/lib/slf4j-log4j12-1.6.1.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/opt/software/hadoop-2.8.3/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.是什么原因

时间: 2023-07-12 21:03:58 浏览: 486
这个错误提示说了两个问题: 1. 发现了多个 SLF4J 日志绑定。这通常发生在在一个应用程序中包含多个不同版本的 SLF4J 库时。这可能会导致日志记录错误或日志重复。可以通过删除其中一个或将其排除来解决此问题。 2. 找不到 Hive 库。这很可能是因为您没有正确设置 Hive 的类路径。您需要在 flume 的 classpath 中包含 Hive 相关的库。可以尝试设置 HIVE_HOME 环境变量并将 $HIVE_HOME/lib 添加到 flume 的 classpath 中,或者手动添加 Hive 相关的 jar 包到 flume 的 classpath 中。 要解决这些问题,您可以尝试以下步骤: 1. 检查 flume 和 Hadoop 版本是否兼容。如果不兼容,可能会导致类路径问题和其他错误。建议使用 Hadoop 2.x 版本与 flume 1.x 版本搭配使用。 2. 检查 flume 的 classpath 是否正确设置。确保 flume 的 classpath 包含 Hive 相关的库。 3. 检查 SLF4J 日志绑定问题。如果存在多个 SLF4J 日志绑定,可以删除其中一个或将其排除。 希望这些信息可以帮助您解决问题。
相关问题

Info: Sourcing environment configuration script /opt/flume/conf/flume-env.sh Info: Including Hadoop libraries found via (/usr/local/hadoop/bin/hadoop) for HDFS access Info: Including Hive libraries found via () for Hive access

这也是一段日志信息,Flume在启动时输出的。它告诉你Flume正在为HDFS和Hive访问加载相关的库文件。在这个日志中,Flume加载了Hadoop和Hive的库文件,以便它可以访问HDFS和Hive。这些库文件通常位于Hadoop和Hive的安装目录下的lib目录中。Flume的日志信息可以帮助你了解它在启动时做了哪些操作,以及它的配置是否正确。

启动flume是报以下错误Info: Including Hadoop libraries found via (/opt/software/hadoop-2.8.3/bin/hadoop) for HDFS access Info: Including Hive libraries found via (/opt/software/hive-2.3.3) for Hive access + exec /opt/jdk1.8.0_261/bin/java -Xmx20m -cp '/opt/software/flume-1.8.0/conf:/opt/software/flume-1.8.0/lib/*:/opt/software/hadoop-2.8.3/etc/hadoop:/opt/software/hadoop-2.8.3/share/hadoop/common/lib/*:/opt/software/hadoop-2.8.3/share/hadoop/common/*:/opt/software/hadoop-2.8.3/share/hadoop/hdfs:/opt/software/hadoop-2.8.3/share/hadoop/hdfs/lib/*:/opt/software/hadoop-2.8.3/share/hadoop/hdfs/*:/opt/software/hadoop-2.8.3/share/hadoop/yarn/lib/*:/opt/software/hadoop-2.8.3/share/hadoop/yarn/*:/opt/software/hadoop-2.8.3/share/hadoop/mapreduce/lib/*:/opt/software/hadoop-2.8.3/share/hadoop/mapreduce/*:/contrib/capacity-scheduler/*.jar:/opt/software/hive-2.3.3/lib/*' -Djava.library.path=:/opt/software/hadoop-2.8.3/lib/native org.apache.flume.node.Application --conf-file /opt/software/flume-1.8.0/conf/hdfs.conf --name agent1 Dflume.root.logger=DEBUG,console SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/opt/software/flume-1.8.0/lib/slf4j-log4j12-1.6.1.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/opt/software/hadoop-2.8.3/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/opt/software/hive-2.3.3/lib/log4j-slf4j-impl-2.6.2.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.是什么原因

这个错误是由于在classpath中包含了多个SLF4J的绑定引起的。由于SLF4J提供了多种绑定,如果在classpath中包含了多个绑定,就会导致这个异常。为了解决这个问题,你可以在classpath中保留一个绑定,并删除其他绑定。或者你可以通过在classpath中包含一个名为slf4j-over-log4j的JAR来解决这个问题,它可以将所有SLF4J日志记录器路由到Log4J日志记录器。

相关推荐

Warning: No configuration directory set! Use --conf <dir> to override. Info: Including Hadoop libraries found via (/opt/hadoop-3.1.2/bin/hadoop) for HDFS access Info: Including HBASE libraries found via (/opt/hbase-2.2.6/bin/hbase) for HBASE access 错误: 找不到或无法加载主类 org.apache.flume.tools.GetJavaProperty Info: Including Hive libraries found via (/opt/hive-3.1.2) for Hive access + exec /opt/jdk1.8.0_351/bin/java -Xmx20m -cp '/opt/flume-1.9.0/lib/*:/opt/hadoop-3.1.2/etc/hadoop:/opt/hadoop-3.1.2/share/hadoop/common/lib/*:/opt/hadoop-3.1.2/share/hadoop/common/*:/opt/hadoop-3.1.2/share/hadoop/hdfs:/opt/hadoop-3.1.2/share/hadoop/hdfs/lib/*:/opt/hadoop-3.1.2/share/hadoop/hdfs/*:/opt/hadoop-3.1.2/share/hadoop/mapreduce/lib/*:/opt/hadoop-3.1.2/share/hadoop/mapreduce/*:/opt/hadoop-3.1.2/share/hadoop/yarn:/opt/hadoop-3.1.2/share/hadoop/yarn/lib/*:/opt/hadoop-3.1.2/share/hadoop/yarn/*:/opt/hbase-2.2.6/conf:/opt/jdk1.8.0_351//lib/tools.jar:/opt/hbase-2.2.6:/opt/hbase-2.2.6/lib/shaded-clients/hbase-shaded-client-byo-hadoop-2.2.6.jar:/opt/hbase-2.2.6/lib/client-facing-thirdparty/audience-annotations-0.5.0.jar:/opt/hbase-2.2.6/lib/client-facing-thirdparty/commons-logging-1.2.jar:/opt/hbase-2.2.6/lib/client-facing-thirdparty/findbugs-annotations-1.3.9-1.jar:/opt/hbase-2.2.6/lib/client-facing-thirdparty/htrace-core4-4.2.0-incubating.jar:/opt/hbase-2.2.6/lib/client-facing-thirdparty/log4j-1.2.17.jar:/opt/hbase-2.2.6/lib/client-facing-thirdparty/slf4j-api-1.7.25.jar:/opt/hadoop-3.1.2/etc/hadoop:/opt/hadoop-3.1.2/share/hadoop/common/lib/*:/opt/hadoop-3.1.2/share/hadoop/common/*:/opt/hadoop-3.1.2/share/hadoop/hdfs:/opt/hadoop-3.1.2/share/hadoop/hdfs/lib/*:/opt/hadoop-3.1.2/share/hadoop/hdfs/*:/opt/hadoop-3.1.2/share/hadoop/mapreduce/lib/*:/opt/hadoop-3.1.2/share/hadoop/mapreduce/*:/opt/hadoop-3.1.2/share/hadoop/yarn:/opt/hadoop-3.1.2/share/hadoop/yarn/lib/*:/opt/hadoop-3.1.2/share/hadoop/yarn/*:/opt/hadoop-3.1.2/etc/hadoop:/opt/hbase-2.2.6/conf:/opt/hive-3.1.2/lib/*' -Djava.library.path=:/opt/hadoop-3.1.2/lib/native org.apache.flume.node.Application --name a1 --conf/opt/flume-1.9.0/conf --conf-file/opt/flume-1.9.0/conf/dhfsspool.conf-Dflume.root.logger=DEBUG,consol SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/opt/flume-1.9.0/lib/slf4j-log4j12-1.7.25.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/opt/hadoop-3.1.2/share/hadoop/common/lib/slf4j-log4j12-1.7.25.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/opt/hive-3.1.2/lib/log4j-slf4j-impl-2.10.0.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory] 2023-06-08 17:26:46,403 ERROR node.Application: A fatal error occurred while running. Exception follows. org.apache.commons.cli.UnrecognizedOptionException: Unrecognized option: --conf/opt/flume-1.9.0/conf at org.apache.commons.cli.Parser.processOption(Parser.java:363) at org.apache.commons.cli.Parser.parse(Parser.java:199) at org.apache.commons.cli.Parser.parse(Parser.java:85) at org.apache.flume.node.Application.main(Application.java:287)

最新推荐

recommend-type

Kafka接收Flume数据并存储至HDFS.docx

Kafka接收Flume数据并存储至HDFS Kafka是Apache软件基金会下的一个开源流处理平台,由LinkedIn开发,现已捐赠给Apache软件基金会。Kafka提供高吞吐量、持久性、可扩展性和容错性等特点,使其成为大数据处理的首选...
recommend-type

kafka+flume 实时采集oracle数据到hive中.docx

然后,需要启动Flume Agent,使用命令./flume-ng agent -n a1 -c conf -f conf/flume.conf。 三、实时采集Oracle数据到Hive中 为了实时采集Oracle数据到Hive中,需要使用Kafka和Flume。首先,需要使用Kafka ...
recommend-type

秒达开源多功能中文工具箱源码:自部署 全开源 轻量级跨平台 GPT级支持+高效UI+Docker

【秒达开源】多功能中文工具箱源码发布:自部署、全开源、轻量级跨平台,GPT级支持+高效UI,Docker/便携版任选,桌面友好+丰富插件生态 这是一款集大成之作,专为追求高效与便捷的用户量身打造。它不仅支持完全自部署,还实现了彻底的开源,确保每一位开发者都能深入了解其内核,自由定制与扩展。 【秒达开源工具箱】以其轻量级的架构设计,实现了在各类设备上的流畅运行,包括ARMv8架构在内的全平台支持,让您无论身处何地,都能享受到同样的便捷体验。我们深知用户需求的多样性,因此特别引入了类似GPT的智能支持功能,让您的操作更加智能、高效。 与此同时,我们注重用户体验,将高效UI与工具箱功能高度集成,使得界面简洁直观,操作流畅自然。为了满足不同用户的部署需求,我们还提供了Docker映像和便携式版本,让您可以根据实际情况灵活选择。 值得一提的是,我们的工具箱还支持桌面版应用,让您在PC端也能享受到同样的强大功能。此外,我们还建立了丰富的开源插件库,不断扩展工具箱的功能边界,让您的工具箱永远保持最新、最全。 【秒达开源】多功能中文工具箱,作为一款永远的自由软件,我们承诺将持续更新、优化,为
recommend-type

Hadoop生态系统与MapReduce详解

"了解Hadoop生态系统的基本概念,包括其主要组件如HDFS、MapReduce、Hive、HBase、ZooKeeper、Pig、Sqoop,以及MapReduce的工作原理和作业执行流程。" Hadoop是一个开源的分布式计算框架,最初由Apache软件基金会开发,设计用于处理和存储大量数据。Hadoop的核心组件包括HDFS(Hadoop Distributed File System)和MapReduce,它们共同构成了处理大数据的基础。 HDFS是Hadoop的分布式文件系统,它被设计为在廉价的硬件上运行,具有高容错性和高吞吐量。HDFS能够处理PB级别的数据,并且能够支持多个数据副本以确保数据的可靠性。Hadoop不仅限于HDFS,还可以与其他文件系统集成,例如本地文件系统和Amazon S3。 MapReduce是Hadoop的分布式数据处理模型,它将大型数据集分解为小块,然后在集群中的多台机器上并行处理。Map阶段负责将输入数据拆分成键值对并进行初步处理,Reduce阶段则负责聚合map阶段的结果,通常用于汇总或整合数据。MapReduce程序可以通过多种编程语言编写,如Java、Ruby、Python和C++。 除了HDFS和MapReduce,Hadoop生态系统还包括其他组件: - Avro:这是一种高效的跨语言数据序列化系统,用于数据交换和持久化存储。 - Pig:Pig Latin是Pig提供的数据流语言,用于处理大规模数据,它简化了复杂的数据分析任务,运行在MapReduce之上。 - Hive:Hive是一个基于HDFS的数据仓库,提供类似SQL的查询语言(HQL)来方便地访问和分析存储在Hadoop中的数据。 - HBase:HBase是一个分布式NoSQL数据库,适用于实时查询和大数据分析,它利用HDFS作为底层存储,并支持随机读写操作。 - ZooKeeper:ZooKeeper是一个协调服务,提供分布式一致性,如命名服务、配置管理、选举和分布式同步,是构建分布式应用的关键组件。 - Sqoop:Sqoop是一个工具,用于高效地在Hadoop和传统的关系型数据库管理系统(RDBMS)之间导入导出数据。 MapReduce的工作流程包括作业提交、任务调度和执行。作业由客户端提交到JobTracker,JobTracker将作业分解为多个Map任务和Reduce任务,并分配给TaskTracker节点执行。TaskTracker节点负责执行任务并定期向JobTracker汇报进度。当所有任务完成时,JobTracker通知客户端作业完成。 Hadoop及其生态系统提供了全面的解决方案,从数据存储到数据处理,再到数据分析,使得处理海量数据变得可能和高效。通过理解和掌握这些核心概念,开发者可以构建强大的分布式应用程序,应对大数据挑战。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【算法与数据结构融合】:next算法在各领域中的多维应用

![【算法与数据结构融合】:next算法在各领域中的多维应用](https://media.geeksforgeeks.org/wp-content/uploads/20230316121305/Complexity-Analysis-A-complete-reference-(1).png) # 1. next算法概述及理论基础 在探索文本编辑、网络通信、编程语言处理、数据分析等众多领域中发挥核心作用的算法,next算法(也被称为next数组或部分匹配表)是一项极其重要的技术。next算法的基本理论在于通过一种预处理机制,提高字符串匹配的效率,它在KMP算法中扮演关键角色,是计算机科学中用
recommend-type

redis7.4安装

Redis 7.4是一个高性能的键值存储系统,常用于缓存、消息队列等场景。下面是安装Redis 7.4的基本步骤,假设你在Linux环境下: 1. **下载安装包**: - 访问Redis官方网站(https://redis.io/download)下载适用于你的系统的版本,如`redis-7.4.0.tar.gz`。 - 将下载的文件移动到合适的目录,比如`/tmp`。 2. **解压安装包**: ``` tar xvf redis-7.4.0.tar.gz ``` 3. **配置安装**: 进入解压后的目录: ``` cd redis-
recommend-type

MDS系列三相整流桥模块技术规格与特性

"MDS50A1200V是一款三相不可控整流桥,适用于高功率应用,如软启动电路、焊接设备和电机速度控制器。该芯片的最大整流电流为50A,耐压可达1200V,采用ISOTOP封装,具有高功率密度和优化的电源总线连接。" 详细内容: MDS50A1200V系列是基于半桥SCR二极管配置的器件,设计在ISOTOP模块中,主要特点在于其紧凑的封装形式,能够提供高功率密度,并且便于电源总线连接。由于其内部采用了陶瓷垫片,确保了高电压绝缘能力,达到了2500VRMS,符合UL标准。 关键参数包括: 1. **IT(RMS)**:额定有效值电流,有50A、70A和85A三种规格,这代表了整流桥在正常工作状态下可承受的连续平均电流。 2. **VDRM/VRRM**:反向重复峰值电压,可承受的最高电压为800V和1200V,这确保了器件在高压环境下的稳定性。 3. **IGT**:门触发电流,有50mA和100mA两种选择,这是触发整流桥导通所需的最小电流。 4. **IT(AV)**:平均导通电流,在单相电路中,180°导电角下每个设备的平均电流,Tc=85°C时,分别为25A、35A和55A。 5. **ITSM/IFSM**:非重复性浪涌峰值电流,Tj初始温度为25°C时,不同时间常数下的最大瞬态电流,对于8.3ms和10ms,数值有所不同,具体为420A至730A或400A至700A。 6. **I²t**:熔断I²t值,这是在10ms和Tj=25°C条件下,导致器件熔断的累积电流平方与时间乘积,数值范围为800A²S到2450A²S。 7. **dI/dt**:关断时的电流上升率,限制了电流的快速变化,避免对器件造成损害。 这些参数对于理解和使用MDS50A1200V至关重要,它们确保了器件在特定工作条件下的安全性和可靠性。在设计电路时,必须确保不超过这些绝对极限值,以防止过热、损坏或失效。此外,选择合适的驱动电路和保护机制也是使用此整流桥的关键,以确保其在电机控制、软启动等应用中的高效运行。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【提高计算效率】:next数组算法的并行化探索

![【提高计算效率】:next数组算法的并行化探索](https://itechhacks.com/wp-content/uploads/2023/01/HWINFO-RUN-1.jpg) # 1. next数组算法基础 随着数据处理需求的增长和计算能力的提升,算法优化和并行计算变得至关重要。本章将介绍next数组算法的基础知识,为读者理解后续章节的并行计算和优化内容打下基础。 ## 1.1 next数组算法概述 next数组算法是一种处理大型数据集的高效算法,特别适用于大数据环境下的数组运算。该算法能够有效减少计算资源的消耗,并提高数据处理速度。 ## 1.2 算法步骤与原理 该算法的