data = np.zeros((Landset_data.shape[0],Landset_data.shape[1]*Landset_data.shape[2])) for i in range(Landset_data.shape[0]): data[i] = Landset_data[i].flatten() data = data.swapaxes(0,1)
时间: 2023-11-29 12:05:30 浏览: 52
这段代码的作用是将三维的Landset_data数据变成二维的data数据,其中每一行是一个像素点的所有通道的数值。具体来说,首先创建一个全为0的二维数组,其行数为Landset_data的第一维大小,列数为Landset_data的第二维和第三维大小的乘积。然后通过循环遍历Landset_data的第一维,将每个二维矩阵展平成一维数组,并存储到data的对应行上。最后通过swapaxes函数交换data的行和列,使得每一列对应一个像素点的所有通道数值。
相关问题
def data_preprocess(): # 将给定的训练和测试集读入,并转换成预定格式的张量 path_train = 'trainsamples5.mat' path_test = 'testsamples5.mat' data_train_dic = scio.loadmat(path_train) data_test_dic = scio.loadmat(path_test) data_train = data_train_dic['trainsamples5'] data_test = data_test_dic['testsamples5'] data_train = data_train.reshape(-1, 150) data_test = data_test.reshape(-1, 150) data_train = torch.from_numpy(data_train) data_test = torch.from_numpy(data_test) data_train_pre = data_train.unsqueeze(dim=1) data_test_pre = data_test.unsqueeze(dim=1) zeros = np.zeros((50, 1)) ones = np.ones((50, 1)) label = np.concatenate((zeros, ones, ones * 2, ones * 3, ones * 4), axis=0) # get label label = torch.from_numpy(label) label_pre = label.view(-1).long() return data_train_pre, data_test_pre, label_pre
这段代码是用来做机器学习中的数据预处理的,主要是将给定的训练和测试集读入并转换成预定格式的张量。其中,使用了scio.loadmat函数读入.mat类型的数据,然后使用numpy将数据reshape成(-1, 150)的形状,接着将numpy数组转换成PyTorch的张量。最后,使用torch.from_numpy将numpy数组转换成张量,使用torch.unsqueeze在第二维插入一个维度,使得数据维度变成了(batch_size, 1, 150)的形状。同时,还生成了标签数据label,并将其转换成了PyTorch的张量,最后使用label.view(-1).long()将label的形状变成了(batch_size,)的形状。
这是函数def Read_Data(path, type): path = path+type X_data = pd.read_csv(path + "/Signals/X_"+type+".txt", header=None).values Y_data = pd.read_csv(path + "/Signals/Y_"+type+".txt", header=None).values X_test = np.zeros((len(X_data), 600)) Y_test = np.zeros((len(Y_data), 600)) label = pd.read_csv(path + "/label_"+type+".csv", header=None).values for i in range(1, len(X_test)): temp = np.array(X_data[i, 0].split(" "), dtype=np.float32) X_test[i, :] = temp[0:] temp = np.array(Y_data[i, 0].split(" "), dtype=np.float32) Y_test[i, :] = temp[0:] n_step = 600 n_channel = 2 data = np.zeros((len(X_test), n_step, n_channel)) for i in range(len(X_test)): data[i, :, 0] = X_test[i, :n_step] data[i, :, 1] = Y_test[i, :n_step] data = standardize(data) data = Normalize(data) data = torch.from_numpy(data).to(device).float() label = torch.from_numpy(label).to(device) return data, label
这是一个 Python 函数,用于读取数据并进行标准化和归一化处理。它需要传入两个参数:路径和类型。函数会读取指定路径下的 X 和 Y 信号数据以及标签数据,并将它们合并成一个三维数组。最后,函数会将数据转换为 PyTorch 张量并返回。
阅读全文