bin_img = np.zeros(shape=timg.shape, dtype=np.uint8)
时间: 2023-11-12 22:07:44 浏览: 95
这段代码的作用是创建一个与`timg`具有相同形状和数据类型的全零数组`bin_img`。`shape`参数指定了数组的形状,`dtype`参数指定了数组元素的数据类型。在这里,`np.uint8`表示无符号8位整数,即像素值范围在0到255之间。通常,这个数组会被用来存储二值化后的图像,其中像素值为0或255。
相关问题
def get_binary_img(timg): bin_img = np.zeros(shape=timg.shape, dtype=np.uint8) h = timg.shape[0] # 表示y的大小 w = timg.shape[1] # 表示x的大小 # print(" h = {} w = {}".format(h,w)) for i in range(h): # 从上到下 for j in range(w): bin_img[i][j] = 255 if timg[i][j] > 200 else 0 return bin_img
这段代码实现了一个简单的图像二值化函数`get_binary_img`,其输入参数`timg`为一张灰度图像。函数返回一个二值化后的图像`bin_img`,其中像素值为0或255。
具体实现为,先创建一个与输入图像`timg`具有相同形状和数据类型的全零数组`bin_img`,然后遍历输入图像的每个像素,将其灰度值与阈值200进行比较,如果大于阈值则将对应的二值图像像素置为255,否则置为0。最后返回二值化后的图像`bin_img`。
讲解这段代码的作用 diff_image = np.zeros(original_img.shape, dtype=np.uint8)
这段代码的作用是创建一个与original_img相同大小的全零矩阵(diff_image),数据类型为8位无符号整数(dtype=np.uint8)。这个矩阵可以用于存储两个图像之间的差异或者像素点之间的差异。在图像处理中,经常需要计算图像之间的差异,比如图像的相似度、运动检测、背景减除等等。使用这个代码可以创建一个空白的矩阵,用于存储差异值,然后将原始图像与处理后的图像进行比较,计算差异值并存储在矩阵中。这个矩阵可以用于进一步的图像处理或者显示差异图像。
阅读全文