def Normalization(): img_path = "results" save_path = "Normalresult" img_names = os.listdir(img_path) for img_name in img_names: img = os.path.join(img_path, img_name) img = cv2.imread(img) result = np.zeros(img.shape, dtype=np.float32) result = img / 255.0 # cv2.normalize(img, result, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F) print(result) image = np.uint8(result * 255.0) print((img == image).all()) # cv2.imshow("norm",result) # cv2.waitKey(1000) cv2.imwrite(os.path.join(save_path, img_name), image)
时间: 2024-04-06 21:29:55 浏览: 91
这段代码的作用是将指定路径下的所有图片进行归一化处理,并将处理后的图片保存到指定的保存路径中。具体来说,代码首先使用 os 库中的 listdir 函数获取指定路径下所有图片的文件名,接着使用循环遍历每个图片文件名。在循环中,使用 cv2 库中的 imread 函数读取当前图片,然后创建一个与当前图片大小相同的全零数组 result,并将当前图片的像素值除以 255.0,从而将像素值变为 [0,1] 的范围。接着,代码将 result 数组中的像素值乘以 255.0 并转换为整型,得到归一化后的图片 image,并使用 cv2 库中的 imwrite 函数将 image 保存到指定的保存路径中。最后,代码对比原始图片和归一化后的图片的像素值是否一致,并输出结果。
相关问题
解释代码:if __name__ == '__main__': ae_path = '../results/AE/best.pth' img_path = '../data/comsol_format_figures_simplify_copy' ae_model = AE(features_num = 700) ae_model.load_state_dict(torch.load(ae_path)) ae_model.eval() for idx, filename in enumerate(os.listdir(img_path)): img = cv2.imread(img_path + '/' + filename, cv2.IMREAD_GRAYSCALE) # 灰度图读取图片 img_tensor = transforms.ToTensor()(img) img_tensor = img_tensor.view(1, 1, 128, 128) output, features = ae_model(img_tensor) arr = features.detach().numpy() file_dir = '../data/mlp_train/output_' + str(idx + 1) + '.txt' np.savetxt(file_dir, arr)
这段代码是一个主程序,主要实现了对图像进行特征提取并保存的功能。
首先,在 `if __name__ == '__main__':` 的条件下执行以下代码:
1. 定义变量 ae_path,表示自动编码器模型的路径。
2. 定义变量 img_path,表示图像文件所在的目录路径。
3. 创建一个 AE 类的实例 ae_model,设置 features_num 参数为 700。
4. 使用 torch.load 函数加载预训练的自动编码器模型的权重,并调用 ae_model.load_state_dict 方法将权重加载到 ae_model 中。
5. 调用 ae_model.eval() 将 ae_model 设置为评估模式,关闭 dropout 和 batch normalization 等层的随机性。
6. 使用 os.listdir 函数遍历图像文件目录中的所有文件名,同时迭代索引和文件名。
7. 使用 cv2.imread 函数读取图像文件并转换为灰度图像。
8. 使用 transforms.ToTensor() 将图像转换为张量,并将其形状调整为 (1, 1, 128, 128)。
9. 将调整后的图像张量输入到 ae_model 中,获取输出 output 和特征 features。
10. 将特征 features 转换为 numpy 数组,并保存到文件中,文件路径为 '../data/mlp_train/output_' + str(idx + 1) + '.txt'。
这段代码的目的是使用预训练的自动编码器模型对图像进行特征提取,并将特征保存到文件中。通过遍历图像文件目录中的所有文件,并逐个处理,可以对整个数据集进行特征提取和保存。
解释一下这段代码:class ResnetBlock(Model): def __init__(self, filters, strides=1,residual_path=False): super(ResnetBlock, self).__init__() self.filters = filters self.strides = strides self.residual_path = residual_path self.c1 = Conv2D(filters, (3, 3), strides=strides, padding='same', use_bias=False) self.b1 = BatchNormalization() self.a1 = Activation('relu') self.c2 = Conv2D(filters, (3, 3), strides=1, padding='same', use_bias=False) self.b2 = BatchNormalization() if residual_path: self.down_c1 = Conv2D(filters, (1, 1),strides=strides, padding='same', use_bias=False) self.down_b1 = BatchNormalization() self.a2 = Activation('relu') def call(self, inputs): residual = inputs x = self.c1(inputs) x = self.b1(x) x = self.a1(x) x = self.c2(x) y = self.b2(x) if self.residual_path: residual = self.down_c1(inputs) residual = self.down_b1(residual) out = self.a2(y + residual) return out class ResNet18(Model): def __init__(self, block_list, initial_filters=64): super(ResNet18, self).__init__() self.num_blocks = len(block_list) self.block_list = block_list self.out_filters = initial_filters self.c1 = Conv2D(self.out_filters, (3, 3), strides=1, padding='same', use_bias=False, kernel_initializer='he_normal') self.b1 = BatchNormalization() self.a1 = Activation('relu') self.blocks = tf.keras.models.Sequential() for block_id in range(len(block_list)): for layer_id in range(block_list[block_id]): if block_id != 0 and layer_id == 0: block = ResnetBlock(self.out_filters, strides=2, residual_path=True) else: block = ResnetBlock(self.out_filters, residual_path=False) self.blocks.add(block) self.out_filters *= 2 self.p1 = tf.keras.layers.GlobalAveragePooling2D() self.f1 = tf.keras.layers.Dense(41, activation='tanh') def call(self, inputs): x = self.c1(inputs) x = self.b1(x) x = self.a1(x) x = self.blocks(x) x = self.p1(x) y = self.f1(x) return y
这段代码定义了两个类:ResnetBlock和ResNet18。ResnetBlock是ResNet18的基本模块,用于构建ResNet18的主体结构。ResnetBlock包含两个卷积层和批归一化层,以及一个残差路径。ResNet18是一个由ResnetBlock组成的深度卷积神经网络,包含多个ResnetBlock,每个ResnetBlock中包含多个卷积层和批归一化层。在ResNet18的定义中,先定义了第一个卷积层、批归一化层和激活层,然后通过循环创建多个ResnetBlock,并在每个ResnetBlock中根据需要定义残差路径,最后通过全局平均池化层和全连接层输出预测结果。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044901.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)