from pandas import Series import numpy as np data = Series([1.,-1.,2.,-1.,-2.,3.]) data.replace([-1,-2],[np.nan,0]) 执行程序,输出的结果是什么
时间: 2024-03-01 13:56:13 浏览: 105
执行这段程序后,输出的结果是一个新的 Series 对象,其中 -1 和 -2 被替换为了 NaN 和 0。但是,原始数据 Series 对象并没有被修改,需要将结果赋值给一个新的变量或者覆盖原始数据。可以使用以下代码来实现:
```
new_data = data.replace([-1,-2],[np.nan,0])
print(new_data)
```
输出结果为:
```
0 1.0
1 NaN
2 2.0
3 NaN
4 0.0
5 3.0
dtype: float64
```
相关问题
from __future__ import print_function from pandas import DataFrame,Series import pandas as pd datafile='/root/dataset/air_customer_Data/air_data.csv' data=pd.read_csv(datafile,encoding='utf-8') cleanedfile='cleaned.csv' data1=data[data['SUM_YR_1'].notnull() & data['SUM_YR_2'].notnull()] data1 index1=data['SUM_YR_1']!=0 index2=data['SUM_YR_2']!=0 index3=data['SEG_KM_SUM']>0 data1 = data1[(index1 | index2) & index3] data1.to_csv(cleanedfile) data2=data1[['LOAD_TIME','FFP_DATE','LAST_TO_END','FLIGHT_COUNT','SEG_KM_SUM','avg_discount']] data2.to_csv('datadecrese.csv') 3 import numpy as np data=pd.read_csv('datadecrese.csv') data['L']=pd.to_datetime(data['LOAD_TIME'])-pd.to_datetime(data['FFP_DATE']) data['L'] =data['L'].astype("str").str.split().str[0] # 去除数据中的days字符,只输出数字,再转化为数值型数据 data['L'] = data['L'].astype("int") / 30 data.drop(columns=['LOAD_TIME','FFP_DATE'], inplace=True) data.rename(columns = {'LAST_TO_END':'R','FLIGHT_COUNT':'F','SEG_KM_SUM':'M','avg_discount':'C'},inplace=True) data.drop(columns=['Unnamed: 0'], inplace=True) 4 data.describe() 5 P108 data=(data-data.mean())/data.std() 6 import pandas as pd from pandas import DataFrame,Series from sklearn.cluster import KMeans k=5 kmodel=KMeans(n_clusters=k,random_state=3) kmodel.fit(data) 7 import matplotlib import matplotlib.pyplot as plt clu=kmodel.cluster_centers_ x=[1,2,3,4,5] plt.rcParams['font.sans-serif'] = 'SimHei' plt.rcParams['axes.unicode_minus'] = False for i in range(5): plt.plot(x,clu[i]) plt.show
这段代码是用Python的Pandas和Scikit-learn库进行数据预处理和聚类分析的。首先,从一个csv文件中读取数据,然后进行数据清洗,去除缺失值和异常值,再将数据保存为新的csv文件。接着,读取新的csv文件,对数据进行标准化处理,再使用KMeans算法进行聚类分析。最后,使用Matplotlib库对聚类结果进行可视化展示。
import pandas as pd import numpy as np path_marry=r"D:\迅雷下载\新建文件夹\数据集\数据可视化数据集\结婚离婚\结婚数据.csv" path_divorse=r"D:\迅雷下载\新建文件夹\数据集\数据可视化数据集\结婚离婚\离婚数据.csv" marry_data=pd.read_csv(path_marry) divorse_data=pd.read_csv(path_divorse) marry_data=marry_data.set_index(marry_data['地区']).drop(columns=["地区"]) #将索引变成地区 demo=marry_data.transpose() #transpose可以实现行列互换 demo["全国合计"]=demo.sum(axis=1) #沿着1轴相加 marry_data=demo.transpose() #取出要可视化的行列,一般索引为X轴数据,VALUE值为Y轴数据 show_data2=show_data2.sort_values() show_data2=marry_data["2019年"] show_data2=show_data2.iloc[:-1] x_axis_data=show_data2.index.tolist() y_axis_data=show_data2.values.tolist() from pyecharts import options as opts from pyecharts.charts import Bar from pyecharts.faker import Faker c = ( Bar(init_opts=opts.InitOpts(width="1000px",height="700px")) .add_xaxis(x_axis_data) .add_yaxis("2019年结婚登记数量(万对)", y_axis_data) .reversal_axis() #进行轴的转换 .set_series_opts(label_opts=opts.LabelOpts(position="right")) .set_global_opts(title_opts=opts.TitleOpts(title="全国2019年结婚登记数量(万对)")) ) c.render_notebook()为什么这个代码没有升序显示
在你修改代码时,将 `show_data2=show_data2.sort_values()` 放在了 `show_data2=marry_data["2019年"]` 的后面,这样的话排序并没有生效。你需要将这行代码放在读取数据和筛选数据之间,即在 `x_axis_data` 和 `y_axis_data` 定义之前:
```
import pandas as pd
import numpy as np
from pyecharts import options as opts
from pyecharts.charts import Bar
path_marry=r"D:\迅雷下载\新建文件夹\数据集\数据可视化数据集\结婚离婚\结婚数据.csv"
marry_data=pd.read_csv(path_marry)
marry_data=marry_data.set_index(marry_data['地区']).drop(columns=["地区"])
demo=marry_data.transpose()
demo["全国合计"]=demo.sum(axis=1)
marry_data=demo.transpose()
show_data2=marry_data["2019年"]
show_data2=show_data2.sort_values() # 将这行代码放在读取数据和筛选数据之间
show_data2=show_data2.iloc[:-1]
x_axis_data=show_data2.index.tolist()
y_axis_data=show_data2.values.tolist()
c = (
Bar(init_opts=opts.InitOpts(width="1000px",height="700px"))
.add_xaxis(x_axis_data)
.add_yaxis("2019年结婚登记数量(万对)", y_axis_data)
.reversal_axis()
.set_series_opts(label_opts=opts.LabelOpts(position="right"))
.set_global_opts(title_opts=opts.TitleOpts(title="全国2019年结婚登记数量(万对)"))
)
c.render_notebook()
```
这样的话,就可以升序排列展示了。
阅读全文