gbdt分类模型算法代码实现
时间: 2023-09-04 13:15:43 浏览: 114
gbdt算法实现
4星 · 用户满意度95%
GBDT(Gradient Boosting Decision Tree)是一种集成学习算法,它通过迭代地训练决策树来提高分类性能。下面是一个简单的示例代码,演示如何使用Python中的sklearn库实现GBDT分类模型。
首先,我们需要导入必要的库:
```python
from sklearn.datasets import load_iris
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
```
接着,我们使用鸢尾花数据集作为示例数据:
```python
data = load_iris()
X = data['data']
y = data['target']
```
然后,我们将数据划分为训练集和测试集:
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
现在,我们可以定义一个GBDT分类器并拟合训练数据:
```python
clf = GradientBoostingClassifier()
clf.fit(X_train, y_train)
```
最后,我们可以使用测试数据评估模型的性能:
```python
y_pred = clf.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
```
完整的代码如下:
```python
from sklearn.datasets import load_iris
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
data = load_iris()
X = data['data']
y = data['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
clf = GradientBoostingClassifier()
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
```
这个示例演示了如何使用sklearn库实现GBDT分类模型。请注意,这只是一个简单的示例,实际应用中可能需要进行更多的数据预处理和参数调整。
阅读全文