pd.get_dummies
时间: 2023-07-09 19:04:40 浏览: 98
`pd.get_dummies` 是 pandas 库中的一个函数,用于将一个包含分类变量的 DataFrame 或 Series 转换为哑变量矩阵。哑变量矩阵是一种二进制矩阵,用于表示分类变量的取值情况。
例如,假设有一个包含性别和年龄的 DataFrame:
```
import pandas as pd
df = pd.DataFrame({
'gender': ['male', 'female', 'male', 'male', 'female'],
'age': [25, 30, 20, 35, 28]
})
```
可以使用 `pd.get_dummies` 将 `gender` 列转换为哑变量矩阵:
```
pd.get_dummies(df['gender'])
```
输出结果为:
```
female male
0 0 1
1 1 0
2 0 1
3 0 1
4 1 0
```
可以看到,`pd.get_dummies` 将 `gender` 列中的每个取值转换为了一个新的列,并用 0/1 表示该行是否属于该取值。这样做的好处是可以将分类变量用于机器学习算法中,因为大多数算法只能处理数值型数据。
相关问题
使用pd.get_dummies
`pd.get_dummies()`是pandas库中的一个函数,用于将离散型特征变量转换为计算机可读的特征距离。它将离散特征的每个取值创建为一个新的二进制变量,并将原始特征变量替换为这些新的二进制变量。
该函数的参数如下:
- `data`:要进行独热编码的数据集。
- `prefix`:新创建的二进制变量的前缀。
- `prefix_sep`:前缀与原始特征变量名之间的分隔符。
- `dummy_na`:是否为缺失值创建一个新的二进制变量。
- `columns`:要进行独热编码的特征变量列名。
- `sparse`:是否返回稀疏矩阵。
- `drop_first`:是否删除第一个类别,以避免多重共线性。
- `dtype`:返回的数据类型。
以下是一个使用`pd.get_dummies()`函数的示例:
```python
import pandas as pd
data = pd.DataFrame({'color': ['red', 'blue', 'red', 'green'],
'size': ['XL', 'L', 'M', 'XL']})
encoded_data = pd.get_dummies(data, prefix='dummy', prefix_sep='_')
print(encoded_data)
```
输出结果如下:
```
dummy_blue dummy_green dummy_red dummy_L dummy_M dummy_XL
0 0 0 1 0 0 1
1 0 0 1 0 0
2 0 0 1 0 1 0
3 0 1 0 0 0 1
```
这个例子中,原始数据集有两个离散特征变量:`color`和`size`。使用`pd.get_dummies()`函数将这两个特征变量进行独热编码后,生成了新的二进制变量,并替换了原始特征变量。
pd.get_dummies参数
pd.get_dummies() 是 pandas 库中的一个函数,用于将分类变量转换为哑变量(dummy variable)或指示变量(indicator variable)。
其参数如下:
- data:要进行处理的数据,可以是 Series、DataFrame 或者 ndarray 类型。
- prefix:哑变量列名的前缀,字符串类型。
- prefix_sep:用于连接前缀和原始列名的分隔符,默认为 '_'。
- columns:指定要进行哑变量编码的列,默认为所有列。
- sparse:是否使用稀疏矩阵表示。默认为 False,即不使用稀疏矩阵。
- drop_first:是否删除第一列,即每个分类变量的第一个值所对应的哑变量列。默认为 False,即不删除第一列。
例如:
```python
import pandas as pd
df = pd.DataFrame({'A': ['a', 'b', 'c'], 'B': ['x', 'y', 'z']})
dummies = pd.get_dummies(df)
print(dummies)
```
输出结果为:
```
A_a A_b A_c B_x B_y B_z
0 1 0 0 1 0 0
1 0 1 0 0 1 0
2 0 0 1 0 0 1
```
这里将 DataFrame 中的两个分类变量 A 和 B 转换为哑变量,列名前缀默认为变量名。
阅读全文