怎么用先序遍历、中序遍历、后序遍历和层次遍历这些方式验证结果是否正确
时间: 2024-06-06 07:11:50 浏览: 57
你可以用以下方式进行验证:
先序遍历:按照根节点-左子树-右子树的顺序遍历二叉树。
中序遍历:按照左子树-根节点-右子树的顺序遍历二叉树。
后序遍历:按照左子树-右子树-根节点的顺序遍历二叉树。
层次遍历:从上到下,从左到右依次遍历每一层的节点。
通过以上四种方式进行遍历并对比结果,可以验证结果是否正确。
相关问题
假设二叉树采用二叉链存储,每个结点值为单个字符,并且所有结点值不相同。编写一个实验程序,由二叉树的中序序列和后序序列构造二叉树,实现查找、求高度、先序遍历、中序遍历、后序遍历算法和层次遍历算法,用相关数据进行测试。
好的,我知道了你的问题。以下是我提供的代码实现:
```python
class Node:
def __init__(self, data):
self.data = data
self.left = None
self.right = None
def buildTree(inorder, postorder):
if not inorder or not postorder:
return None
root = Node(postorder[-1])
inorderIndex = inorder.index(root.data)
root.left = buildTree(inorder[:inorderIndex], postorder[:inorderIndex])
root.right = buildTree(inorder[inorderIndex+1:], postorder[inorderIndex:-1])
return root
def search(root, key):
if root is None or root.data == key:
return root
if root.data < key:
return search(root.right, key)
return search(root.left, key)
def height(root):
if root is None:
return 0
leftHeight = height(root.left)
rightHeight = height(root.right)
return max(leftHeight, rightHeight) + 1
def preorder(root):
if root is not None:
print(root.data, end=' ')
preorder(root.left)
preorder(root.right)
def inorder(root):
if root is not None:
inorder(root.left)
print(root.data, end=' ')
inorder(root.right)
def postorder(root):
if root is not None:
postorder(root.left)
postorder(root.right)
print(root.data, end=' ')
def levelOrder(root):
if root is None:
return
queue = []
queue.append(root)
while queue:
current = queue.pop(0)
print(current.data, end=' ')
if current.left:
queue.append(current.left)
if current.right:
queue.append(current.right)
# 测试
inorder = ['D', 'B', 'E', 'A', 'F', 'C']
postorder = ['D', 'E', 'B', 'F', 'C', 'A']
root = buildTree(inorder, postorder)
print('Search:', search(root, 'B').data)
print('Height:', height(root))
print('Preorder:', end=' ')
preorder(root)
print('\nInorder:', end=' ')
inorder(root)
print('\nPostorder:', end=' ')
postorder(root)
print('\nLevel order:', end=' ')
levelOrder(root))
```
这段代码实现了二叉树的构建、查找、求高度、先序遍历、中序遍历、后序遍历和层次遍历算法。你可以根据需要修改测试数据,来验证代码的正确性。
python给定一个二叉树和两个节点,实现一个函数,找到这两个节点的最近公共祖先。最近公共祖先是指离这两个节点最近的、同时是它们祖先的节点。验证你的实现是否正确,通过对二叉树进行先序遍历、中序遍历、后序遍历和层次遍历,找到给定节点的最近公共祖先实现代码
以下是实现代码:
```
class TreeNode:
def __init__(self, val):
self.val = val
self.left = None
self.right = None
def lowestCommonAncestor(root, p, q):
if root is None:
return None
if root.val == p.val or root.val == q.val:
return root
left = lowestCommonAncestor(root.left, p, q)
right = lowestCommonAncestor(root.right, p, q)
if left is not None and right is not None:
return root
elif left is None:
return right
else:
return left
# 验证代码是否正确
def preorder(root):
if root is None:
return
print(root.val, end=" ")
preorder(root.left)
preorder(root.right)
def inorder(root):
if root is None:
return
inorder(root.left)
print(root.val, end=" ")
inorder(root.right)
def postorder(root):
if root is None:
return
postorder(root.left)
postorder(root.right)
print(root.val, end=" ")
def levelorder(root):
if root is None:
return
queue = [root]
while len(queue) > 0:
node = queue.pop(0)
print(node.val, end=" ")
if node.left is not None:
queue.append(node.left)
if node.right is not None:
queue.append(node.right)
# 构造一个测试树
root = TreeNode(3)
root.left = TreeNode(5)
root.right = TreeNode(1)
root.left.left = TreeNode(6)
root.left.right = TreeNode(2)
root.right.left = TreeNode(0)
root.right.right = TreeNode(8)
root.left.right.left = TreeNode(7)
root.left.right.right = TreeNode(4)
# 找到最近公共祖先并输出
p = TreeNode(5)
q = TreeNode(1)
ancestor = lowestCommonAncestor(root, p, q)
print(f"最近公共祖先:{ancestor.val}")
# 验证代码正确性
print("先序遍历:", end="")
preorder(root)
print("\n中序遍历:", end="")
inorder(root)
print("\n后序遍历:", end="")
postorder(root)
print("\n层次遍历:", end="")
levelorder(root)
```
运行结果如下:
```
最近公共祖先:3
先序遍历:3 5 6 2 7 4 1 0 8
中序遍历:6 5 7 2 4 3 0 1 8
后序遍历:6 7 4 2 5 0 8 1 3
层次遍历:3 5 1 6 2 0 8 7 4
```
阅读全文