def pad_sents(sents, pad_token='<pad>'): sents_padded = [] """ add your code here --- 1 目标: 根据batch中最长的句子填充句子列表。应该在每个句子的末尾填充。 参数: sents (list[list[str]]): 句子列表,其中每个句子表示为单词列表 参数: pad_token (str): 填充的token return: sents_padded (list[list[str]]): 句子列表,其中短于最大长度句子的句子用 pad_token 填充,这样批处理后的每个句子都具有相等的长度。
时间: 2024-02-18 15:05:24 浏览: 21
以下是一个可能的实现代码:
```
def pad_sents(sents, pad_token='<pad>'):
sents_padded = []
max_len = max(len(sent) for sent in sents)
for sent in sents:
padding = [pad_token] * (max_len - len(sent))
sents_padded.append(sent + padding)
return sents_padded
```
这个函数首先遍历所有句子,找到最长的句子长度。然后,对于每个句子,用填充符填充到最大长度,并将其添加到新的填充列表中。最后,返回填充列表。
相关问题
t2.train(train_sents)Traceback (most recent call last): File "<input>", line 1, in <module> AttributeError: 'BigramTagger' object has no attribute 'train'如何改正 完整代码如下:import nltk import random from nltk.corpus import brown from nltk import pos_tag, word_tokenize from nltk.tag import DefaultTagger, UnigramTagger, BigramTagger brown_tagged_sents = brown.tagged_sents(categories='news') size = int(len(brown_tagged_sents) * 0.9) train_sents = brown_tagged_sents[:size] test_sents = brown_tagged_sents[size:] t0 = DefaultTagger('NN') t1 = UnigramTagger(train_sents, backoff=t0) t2 = BigramTagger(train_sents, backoff=t1) t2.train(train_sents) Traceback (most recent call last): File "<input>", line 1, in <module> AttributeError: 'BigramTagger' object has no attribute 'train'
The error message indicates that the `BigramTagger` object does not have the `train` method. This is because `BigramTagger` is already trained during initialization.
To fix this error, you can remove the `t2.train(train_sents)` line and directly use the `t2` tagger to tag new sentences. For example:
```
sent = "This is a test sentence"
tokens = word_tokenize(sent)
tags = t2.tag(tokens)
print(tags)
```
解释下面这段代码 def post_process(self, output): """语音后处理,将模型推理结果映射到文本""" encoder_out, encoder_out_lens, ctc_log_probs, \ beam_log_probs, beam_log_probs_idx = output batch_size = beam_log_probs.shape[0] num_processes = batch_size log_probs_idx = beam_log_probs_idx[:, :, 0] batch_sents = [] for idx, seq in enumerate(log_probs_idx): batch_sents.append(seq[:encoder_out_lens[idx]].tolist()) txt = map_batch(batch_sents, self.vocabulary, num_processes, True, 0)[0] return txt
这是一个语音识别模型的后处理函数,用于将模型的输出结果转换成文本。函数的输入参数output包含了模型的多个输出结果,包括encoder_out, encoder_out_lens, ctc_log_probs, beam_log_probs, beam_log_probs_idx。其中beam_log_probs和beam_log_probs_idx是集束搜索算法得到的结果,表示概率最大的若干个文本序列和它们对应的概率值和索引。
函数首先获取batch_size和num_processes,其中batch_size表示输入的音频序列个数,num_processes表示处理的并行进程数。然后从beam_log_probs_idx中获取每个音频序列对应的最佳文本序列的索引log_probs_idx,再根据encoder_out_lens获取每个音频序列的有效长度,将log_probs_idx中多余的部分截取掉,得到batch_sents,表示每个音频序列对应的最佳文本序列。最后调用map_batch函数将batch_sents映射到文本,并返回文本结果。map_batch函数是一个自定义的函数,用于将输入的文本序列映射到具体的文本内容,具体实现可能涉及到一个词表vocabulary,以及多进程并行处理的技巧。
阅读全文