芯片STM32G030下HAL_Driver 如何使用DMA来读取NTC_ADC值,然后转化为温度值,请分部分代码示例

时间: 2024-02-12 08:03:56 浏览: 25
以下是基于HAL_Driver的STM32G030芯片使用DMA读取NTC_ADC值并转换为温度值的示例代码: 首先需要在CubeMX中配置ADC和DMA,并将NTC连接到ADC输入通道上。在这个过程中,需要注意将ADC的DMA模式设置为循环模式。 然后,在代码中需要初始化ADC和DMA,并启动DMA传输。以下是示例代码: ```c /* 定义NTC_ADC值变量 */ uint16_t ntc_adc_value = 0; /* 定义转换系数变量 */ float ntc_resistance = 10000.0; // NTC电阻值 float ntc_voltage = 3.3; // NTC接入的电压值 float ntc_beta = 3950.0; // NTC的Beta值 float ntc_t0 = 298.15; // NTC参考温度(25℃)的绝对温度值 /* 定义温度值变量 */ float temperature = 0.0; /* 初始化ADC */ ADC_HandleTypeDef hadc; hadc.Instance = ADC1; hadc.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1; hadc.Init.Resolution = ADC_RESOLUTION_12B; hadc.Init.ScanConvMode = ADC_SCAN_ENABLE; hadc.Init.ContinuousConvMode = ENABLE; hadc.Init.DiscontinuousConvMode = DISABLE; hadc.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc.Init.NbrOfConversion = 1; hadc.Init.DMAContinuousRequests = ENABLE; hadc.Init.EOCSelection = ADC_EOC_SINGLE_CONV; hadc.Init.LowPowerAutoWait = DISABLE; hadc.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN; if (HAL_ADC_Init(&hadc) != HAL_OK) { // 初始化失败 } /* 初始化DMA */ DMA_HandleTypeDef hdma; hdma.Instance = DMA1_Channel1; hdma.Init.Request = DMA_REQUEST_ADC1; hdma.Init.Direction = DMA_PERIPH_TO_MEMORY; hdma.Init.PeriphInc = DMA_PINC_DISABLE; hdma.Init.MemInc = DMA_MINC_ENABLE; hdma.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD; hdma.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD; hdma.Init.Mode = DMA_CIRCULAR; hdma.Init.Priority = DMA_PRIORITY_HIGH; if (HAL_DMA_Init(&hdma) != HAL_OK) { // 初始化失败 } /* 开始DMA传输 */ if (HAL_ADC_Start_DMA(&hadc, (uint32_t*)&ntc_adc_value, 1) != HAL_OK) { // 启动失败 } ``` 在这个示例中,我们使用了一个名为`ntc_adc_value`的变量来存储ADC读取到的NTC_ADC值。由于我们只需要读取一个通道的值,因此`hadc.Init.NbrOfConversion`被设置为1。如果需要读取多个通道,可以将其设置为需要读取的通道数。 在程序中,我们使用了一个名为`temperature`的变量来存储转换后的温度值。这个变量将在后面的代码中进行计算和更新。 接下来,我们需要编写一个函数来将NTC_ADC值转换为温度值。以下是示例代码: ```c /** * @brief 将NTC_ADC值转换为温度值 * @param ntc_adc_value NTC_ADC值 * @return 对应的温度值 */ float convert_ntc_adc_to_temperature(uint16_t ntc_adc_value) { float ntc_voltage_value = ((float)ntc_adc_value / 4095.0) * ntc_voltage; // 转换为电压值 float ntc_resistance_value = (ntc_voltage_value * ntc_resistance) / (ntc_voltage - ntc_voltage_value); // 转换为电阻值 float temperature_value = ((ntc_beta * ntc_t0) / (ntc_t0 * log(ntc_resistance_value / ntc_resistance) + ntc_beta)) - 273.15; // 转换为温度值 return temperature_value; } ``` 在这个示例中,我们使用了标准的NTC热敏电阻的计算公式来将NTC_ADC值转换为温度值。具体的计算方法可以参考NTC热敏电阻的相关资料。 最后,我们需要在主函数中定时读取NTC_ADC值,并将其转换为温度值。以下是示例代码: ```c while (1) { HAL_Delay(100); // 等待一段时间 // 计算温度值 temperature = convert_ntc_adc_to_temperature(ntc_adc_value); // 处理温度值 // ... } ``` 在这个示例中,我们使用了`HAL_Delay`函数来等待一段时间。在实际应用中,可以根据具体的需求确定读取NTC_ADC值的时间间隔。 然后,我们调用了`convert_ntc_adc_to_temperature`函数来将NTC_ADC值转换为温度值,并将其存储在`temperature`变量中。最后,我们可以根据具体的需求对温度值进行处理。

相关推荐

最新推荐

recommend-type

STM32 HAL_LOCK问题

在使用STM32的HAL库开发时候,在使用UART和CAN的使用,偶尔会碰到突然不再接收数据的情况.调试发现,信号有的,但是就是软件不再进入接收中断了. 通过调试,最后定位到问题点在于__HAL_LOCK()这个函数里. 以下用uart为...
recommend-type

STM32 SPI DMA 的使用

一是想总结一下SPI总线的特点与注意点,二是总结一下SPI DMA的使用。
recommend-type

STM32定时器触发ADC +DMA

Stm32的ADC有DMA功能这都毋庸置疑,也是我们用的最多的!然而,如果我们要对一个信号(比如脉搏信号)进行定时采样(也就是隔一段时间,比如说2ms),有三种方法: 1、使用定时器中断每隔一定时间进行ADC转换,这样...
recommend-type

STM32的使用之SPI通信DMA模式

MCU:STM32F303VC,在SPI通信中,可以同时开启发送和接收DMA请求,自动数据的发送和接收,完成数据的交换。
recommend-type

STM32 DMA中断模式下ADC多通道数据采集+均值滤波

本程序实现STM32 DMA中断模式下ADC多通道数据采集,并经过简单的均值滤波,亲测可用。 若有错误之处,希望读者指出,大家共同学习,一起进步!
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】增量式PID的simulink仿真实现

# 2.1 Simulink仿真环境简介 Simulink是MATLAB中用于建模、仿真和分析动态系统的图形化环境。它提供了一个直观的用户界面,允许用户使用块和连接线来创建系统模型。Simulink模型由以下元素组成: - **子系统:**将复杂系统分解成更小的、可管理的模块。 - **块:**代表系统中的组件,如传感器、执行器和控制器。 - **连接线:**表示信号在块之间的流动。 Simulink仿真环境提供了广泛的块库,涵盖了各种工程学科,包括控制系统、电子和机械工程。它还支持用户自定义块的创建,以满足特定仿真需求。 # 2. Simulink仿真环境的搭建和建模 ### 2.
recommend-type

训练集和测试集的准确率都99%,但是预测效果不好

即使训练集和测试集的准确率都很高,但是在实际的预测中表现不佳,可能会有以下几个原因: 1. 数据质量问题:模型训练和测试的数据可能存在问题,比如数据标签错误、数据集采样不均衡、数据集中存在异常值等问题,这些问题可能会导致模型在实际预测中表现不佳。 2. 特征工程问题:模型的特征工程可能存在问题,导致模型无法很好地捕捉数据的特征,从而影响预测效果。 3. 模型选择问题:模型的选择可能不合适,比如选择的模型太简单,无法很好地拟合数据,或者选择的模型太复杂,导致过拟合等问题。 4. 超参数调整问题:模型的超参数可能没有调整到最佳状态,需要进行调整。 针对以上可能的原因,可以采取相应的措施进
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。