对于一个数据集,使用python语言,分别使用BPNN模型和SVM模型(参数自行设计)构建一个预测模型,并使用score()函数评价模型准确度
时间: 2024-12-18 13:30:04 浏览: 2
在Python中,我们可以使用`sklearn`库来构建基于BP神经网络(Backpropagation Neural Network,简称BPNN)和支持向量机(Support Vector Machine,简称SVM)的预测模型。这里是一个基本的步骤概述:
1. **导入必要的库**:
```python
import numpy as np
from sklearn.neural_network import MLPRegressor (for BPNN)
from sklearn.svm import SVR
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
```
2. **加载和预处理数据集**:
```python
data = ... # 加载数据集,例如从CSV文件或数据库读取
X, y = data[:, :-1], data[:, -1] # 分割特征和目标变量
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
3. **创建并训练BPNN模型**:
```python
bpnn = MLPRegressor(hidden_layer_sizes=(10, 10), activation='relu', solver='adam') # 参数设置
bpnn.fit(X_train, y_train)
```
4. **创建并训练SVM模型**:
```python
svm = SVR(kernel='rbf', C=1) # 参数设置,如选择核函数和正则化参数C
svm.fit(X_train, y_train)
```
5. **评估模型**:
```python
def score_model(model, X_test, y_test):
y_pred = model.predict(X_test)
mse_bpnn = mean_squared_error(y_test, y_pred)
r2_bpnn = r2_score(y_test, y_pred)
mse_svm = mean_squared_error(y_test, svm.predict(X_test))
r2_svm = r2_score(y_test, svm.predict(X_test))
return mse_bpnn, r2_bpnn, mse_svm, r2_svm
bpnn_mse, bpnn_r2, svm_mse, svm_r2 = score_model(bpnn, X_test, y_test), score_model(svm, X_test, y_test)
```
6. **打印得分**:
```python
print(f"BPNN MSE: {bpnn_mse}, R^2: {bpnn_r2}")
print(f"SVM MSE: {svm_mse}, R^2: {svm_r2}")
阅读全文