ppo算法采用RNN网络写个具体的例子代码
时间: 2024-09-24 17:29:03 浏览: 192
PPO (Proximal Policy Optimization) 是一种常用的强化学习算法,它结合了策略梯度方法和信任区域的概念。在使用 RNN(循环神经网络)作为模型来处理序列数据的情况下,比如在基于文本的游戏或连续控制任务中,我们可以将 PPO 与 RNN 结合,以下是一个简单的 PyTorch 实现的例子:
```python
import torch
from torch import nn
import torch.nn.functional as F
# 假设我们有一个基础的 RNN 模型结构
class RNNPolicy(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(RNNPolicy, self).__init__()
self.hidden_size = hidden_size
self.rnn = nn.RNN(input_size, hidden_size)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x, h0):
# x: 输入序列, h0: 初始隐藏状态
out, _ = self.rnn(x, h0)
action_scores = self.fc(out[:, -1, :]) # 取最后一个时间步的隐藏状态作为输入到 FC 层
return action_scores, h0
# 假设 env.step() 返回一个包含观测值、动作、奖励和新隐藏状态的元组
def ppo_step(model, state, prev_hidden_state, policy_net, value_net, advantage, clip_param=0.2):
# ... (这里省略了一些计算步骤和环境互动部分)
# 获取当前时间步的预测结果和新的隐藏状态
action_scores, new_hidden_state = model(state, prev_hidden_state)
# 计算策略概率和旧策略概率
old_policy = torch.softmax(action_scores, dim=-1)
log_prob_old = torch.log(old_policy + 1e-8) # 防止log(0)
# 根据新旧策略计算取舍后的策略概率
prob_new = torch.exp(torch.min(log_prob_new, log_prob_old.clamp(-clip_param, 1+clip_param)))
# 更新策略和价值函数
ratio = prob_new / old_policy
surr1 = ratio * advantage
surr2 = torch.clamp(ratio, 1-clip_param, 1+clip_param) * advantage
actor_loss = -torch.min(surr1, surr2).mean()
value_pred = value_net(state)
critic_loss = F.mse_loss(value_pred, target_value)
# 回传损失和新的隐藏状态
return actor_loss, critic_loss, new_hidden_state
# 使用示例
model = RNNPolicy(input_size, hidden_size, output_size)
optimizer = torch.optim.Adam(model.parameters())
state, prev_hidden_state = get_initial_state()
for episode in range(num_episodes):
episode_loss = 0
for step in range(max_steps_per_episode):
loss, _, new_hidden_state = ppo_step(model, state, prev_hidden_state, ...)
episode_loss += loss.item()
prev_hidden_state = new_hidden_state
optimizer.zero_grad()
episode_loss.backward()
optimizer.step()
```
这只是一个简化版本,实际应用中还需要添加训练、环境交互、计算优势等更多细节,并对代码进行适当优化。
阅读全文