改正下列代码:import numpy as np import matplotlib.pyplot as plt from sklearn.neural_network import MLPRegressor from sklearn.metrics import mean_squared_error # 输入自变量和因变量 X = np.array([7.36, 7.37, 7.37, 7.39, 7.4 ]).reshape(-1, 1) y = np.array([ 7.37, 7.37, 7.39, 7.4, 7.41]) # 创建并训练人工神经网络模型 model = MLPRegressor(hidden_layer_sizes=(50, 50), activation='relu', solver='adam') model.fit(X, y) # 预测新的自变量对应的因变量 X_new = np.array([7.41]).reshape(-1, 1) y_pred = model.predict(X_new) print(y_pred) # 计算均方误差(MSE) mse = mean_squared_error(y, y_pred) # 计算均方根误差(RMSE) rmse = np.sqrt(mse) print("均方误差(MSE):", mse) print("均方根误差(RMSE):", rmse)
时间: 2024-04-09 10:31:05 浏览: 53
import numpy as np
import matplotlib.pyplot as plt
from sklearn.neural_network import MLPRegressor
from sklearn.metrics import mean_squared_error
# 输入自变量和因变量
X = np.array([7.36, 7.37, 7.37, 7.39, 7.4]).reshape(-1, 1)
y = np.array([7.37, 7.37, 7.39, 7.4, 7.41])
# 创建并训练人工神经网络模型
model = MLPRegressor(hidden_layer_sizes=(50, 50), activation='relu', solver='adam')
model.fit(X, y)
# 预测新的自变量对应的因变量
X_new = np.array([7.41]).reshape(-1, 1)
y_pred = model.predict(X_new)
print(y_pred)
# 计算均方误差(MSE)
mse = mean_squared_error(y, y_pred)
# 计算均方根误差(RMSE)
rmse = np.sqrt(mse)
print("均方误差(MSE):", mse)
print("均方根误差(RMSE):", rmse)
相关问题
修改下列代码第20行的错误:import numpy as np import matplotlib.pyplot as plt from sklearn.neural_network import MLPRegressor from sklearn.metrics import mean_squared_error #输入自变量和因变量 X = np.array([7.36, 7.37, 7.37, 7.39, 7.4]).reshape(-1, 1) y = np.array([7.37, 7.37, 7.39, 7.4, 7.41]) #创建并训练人工神经网络模型 model = MLPRegressor(hidden_layer_sizes=(50, 50), activation='relu', solver='adam') model.fit(X, y) #预测新的自变量对应的因变量 X_new = np.array([7.41]).reshape(-1, 1) y_pred = model.predict(X_new) print(y_pred) #计算均方误差(MSE) mse = mean_squared_error(y, y_pred) #计算均方根误差(RMSE) rmse = np.sqrt(mse) print("均方误差(MSE):", mse) print("均方根误差(RMSE):", rmse)
import numpy as np
import matplotlib.pyplot as plt
from sklearn.neural_network import MLPRegressor
from sklearn.metrics import mean_squared_error
# 输入自变量和因变量
X = np.array([7.36, 7.37, 7.37, 7.39, 7.4]).reshape(-1, 1)
y = np.array([7.37, 7.37, 7.39, 7.4, 7.41])
# 创建并训练人工神经网络模型
model = MLPRegressor(hidden_layer_sizes=(50, 50), activation='relu', solver='adam')
model.fit(X, y)
# 预测新的自变量对应的因变量
X_new = np.array([[7.41]]) # 修改错误:将数组的形状由 (-1, 1) 改为 (1, 1)
y_pred = model.predict(X_new)
print(y_pred)
# 计算均方误差(MSE)
mse = mean_squared_error(y, y_pred)
# 计算均方根误差(RMSE)
rmse = np.sqrt(mse)
print("均方误差(MSE):", mse)
print("均方根误差(RMSE):", rmse)
AttributeError: 'DataFrame' object has no attribute 'data'. Did you mean: '_data'?
对不起,我在代码示例中犯了一个错误。波士顿房价数据集不是一个DataFrame对象,而是一个Bunch对象,因此没有`data`属性。我会修正这个错误,将数据集加载和划分的代码修改如下:
```python
import numpy as np
import pandas as pd
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import Ridge
from sklearn.neural_network import MLPRegressor
from sklearn.svm import SVR
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import matplotlib.pyplot as plt
# 加载波士顿房价数据集
boston = load_boston()
X = boston.data
y = boston.target
# 数据集划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 特征归一化
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
```
非常抱歉给您带来了困惑!
阅读全文