下面这段R代码怎么理解?# 对鲍鱼数据集重新编码 g=c("M","F","F","I","M","M","F") g which(g=="M") ifelse(g=="M",1,ifelse(g=="F",2,3)) grps=list() for (gen in c("M","F","I")) grps[[gen]]=which(g==gen) grps # 另一种方法 lapply(c("M","F","I"),function(gender) which(g==gender)) # 另一种方法 # split(x,f)中x是向量或数据框,f是因子或因子的列表, # 按照f把x划分为组,并返回分组的列表 split(1:7,g) aba <- read.csv("abalone.data",header=F,as.is=T) # stringsAsFactors = FALSE #数据框重命名 names(aba)=c("Sex","Length","Diameter","Height","Whole","Shucked","Viscera","Shell","Rings") head(aba) grps <- list() for (gen in c("M","F")) grps[[gen]] <- which(aba[,1]==gen) abam <- aba[grps$M,] abaf <- aba[grps$F,] plot(abam$Length,abam$Diameter) plot(abaf$Length,abaf$Diameter,pch="x",new=FALSE) #对不同性别组分别做直径对长度的回归分析 by(aba,aba$Sex,function(m) lm(m[,2]~m[,3])) # 排除幼鱼数据 abamf <- aba[aba$Sex != "I",] head(abamf) abamf$Sex <- factor(abamf$Sex,levels = c("M","F")) loall <- sapply(abamf[,-1],function(clmn) {glm(abamf$Sex~clmn,family=binomial)$coef}) loall
时间: 2023-07-06 20:42:20 浏览: 183
这段R代码主要是对鲍鱼数据集进行了一些数据处理和分析。
首先,将性别的编码进行重新编码,并将其转换为数值变量。接着,通过将数据集分为不同的性别组,进行了简单的数据可视化和回归分析。
具体来说,代码中的`g`变量是一个包含鲍鱼性别编码的向量。`which(g=="M")`返回了`g`中所有"M"的索引值。`ifelse(g=="M",1,ifelse(g=="F",2,3))`将"M"编码为1,"F"编码为2,"I"编码为3。`grps=list() for (gen in c("M","F","I")) grps[[gen]]=which(g==gen)`将数据集按照性别分为不同的组。`lapply(c("M","F","I"),function(gender) which(g==gender))`也可以实现相同的效果。`split(1:7,g)`将1到7划分为不同的组。
数据集加载后,将变量名重命名,然后对数据集按照性别进行分组,并将其可视化。`by(aba,aba$Sex,function(m) lm(m[,2]~m[,3]))`对不同性别组分别进行直径对长度的回归分析。
最后,排除幼鱼数据并将性别编码转换为因子变量。`loall <- sapply(abamf[,-1],function(clmn) {glm(abamf$Sex~clmn,family=binomial)$coef})`计算了逻辑回归模型的系数。
相关问题
能帮我修改一段R代码吗?它是用于对鲍鱼数据进行分析后预测性别的R代码,我希望你把它改成除了随机森林模型外的别的模型的代码,我的R代码如下:# load the data abalone <- read.csv("abalone.data", header = FALSE) # set column names colnames(abalone) <- c("Sex", "Length", "Diameter", "Height", "Whole_weight", "Shucked_weight", "Viscera_weight", "Shell_weight", "Rings") # convert "Sex" variable to a factor abalone$Sex <- as.factor(ifelse(abalone$Sex == "M", "M", "F")) # split the data into training and testing sets set.seed(123) # for reproducibility trainIndex <- sample(1:nrow(abalone), 0.7*nrow(abalone)) train <- abalone[trainIndex,] test <- abalone[-trainIndex,] # build a random forest model using default parameters library(randomForest) rf_model <- randomForest(Rings ~ ., data = train) # make predictions on the testing set rf_pred <- predict(rf_model, newdata = test) # evaluate the performance of the model library(Metrics) rmse <- rmse(rf_pred, test$Rings) mae <- mae(rf_pred, test$Rings) cat("RMSE:", rmse, "\nMAE:", mae) accuracy <- (1 - mae / mean(test$Rings)) * 100 cat("\n预测准确率:", round(accuracy, 2), "%")
当然可以帮您修改R代码。您可以选择使用其他机器学习模型来替代随机森林模型,如逻辑回归、决策树、支持向量机等等。下面是适用于逻辑回归模型的修改后的代码:
# load the data
abalone <- read.csv("abalone.data", header = FALSE)
# set column names
colnames(abalone) <- c("Sex", "Length", "Diameter", "Height", "Whole_weight", "Shucked_weight", "Viscera_weight", "Shell_weight", "Rings")
# convert "Sex" variable to a factor
abalone$Sex <- as.factor(ifelse(abalone$Sex == "M", "M", "F"))
# split the data into training and testing sets
set.seed(123) # for reproducibility
trainIndex <- sample(1:nrow(abalone), 0.7*nrow(abalone))
train <- abalone[trainIndex,]
test <- abalone[-trainIndex,]
# build a logistic regression model
model <- glm(Sex ~ Length + Diameter + Height + Whole_weight + Shucked_weight + Viscera_weight + Shell_weight + Rings, data = train, family = binomial(link = 'logit'))
# make predictions on the testing set
pred <- predict(model, newdata = test, type = 'response')
pred <- ifelse(pred > 0.5, 'M', 'F')
# evaluate the performance of the model
library(Metrics)
accuracy <- accuracy(pred, test$Sex)
cat("\n预测准确率:", round(accuracy, 2), "%")
请注意,逻辑回归模型的预测结果是二元分类,所以我们的目标变量从“Rings”变成了“Sex”。另外,我们需要使用“binomial”家族的函数来告诉R我们正在运用逻辑回归模型进行二元分类。
鲍鱼数据集预测年龄代码
以下是使用Python语言和Scikit-learn库实现鲍鱼数据集预测年龄的示例代码:
```python
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
# 读取数据集
data = pd.read_csv("abalone.csv")
# 数据预处理
data["sex"] = pd.get_dummies(data["sex"])["M"]
X = data.drop("age", axis=1)
y = data["age"]
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 建立线性回归模型
lr = LinearRegression()
lr.fit(X_train, y_train)
# 模型评估
y_pred = lr.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print("均方误差:", mse)
# 预测新的鲍鱼数据
new_data = pd.DataFrame({
"sex": [1],
"length": [0.55],
"diameter": [0.44],
"height": [0.14],
"whole_weight": [0.32],
"shucked_weight": [0.14],
"viscera_weight": [0.08],
"shell_weight": [0.1]
})
new_age = lr.predict(new_data)
print("预测年龄:", new_age[0])
```
其中,`abalone.csv`是鲍鱼数据集文件,包含了鲍鱼的各种特征和年龄;将`sex`列转换为0/1编码,其中0表示雌性,1表示雄性;使用线性回归模型进行建模和预测;使用均方误差评估模型的预测性能;最后,给出了一个新的鲍鱼数据,使用模型预测其年龄。
阅读全文