nn.Conv2d(nc, ndf, 4, 2, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), 解释
时间: 2024-06-02 13:07:21 浏览: 151
这段代码是在PyTorch框架下对图像进行卷积操作的定义。其中,nn.Conv2d是一个在二维图像上的卷积操作,nc是输入图像的通道数,ndf是输出图像的通道数,4是卷积核的大小,2是卷积核滑动的步长,1是填充的大小,bias=False表示不使用偏置项。nn.LeakyReLU是激活函数,0.2是斜率,inplace=True表示在原地进行操作,即用原来的变量来存储结果,减少内存占用。这个激活函数在处于负半轴的时候斜率不为0,能够弥补ReLU函数在负半轴的不足。
相关问题
使用nn.Sigmoid()将输出值转换为0或1,怎么改
如果你不想使用`nn.Sigmoid()`将输出值转换为0或1,可以尝试使用其他的激活函数或者修改后面的处理方式。
例如,可以使用`nn.Tanh()`函数将输出值映射到[-1, 1]区间内,然后使用阈值函数将输出值转换为0或1。以下是Python代码示例:
```python
class Discriminator(nn.Module):
def __init__(self, ndf, nc):
super(Discriminator, self).__init__()
self.ndf = ndf
self.nc = nc
self.main = nn.Sequential(
nn.Conv2d(nc, ndf, 3, 1, 0, bias=False),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(ndf, ndf * 2, 3, 1, 0, bias=False),
nn.BatchNorm2d(ndf * 2),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(ndf * 2, ndf * 4, 3, 1, 0, bias=False),
nn.BatchNorm2d(ndf * 4),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(ndf * 4, ndf * 8, 3, 1, 0, bias=False),
nn.BatchNorm2d(ndf * 8),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(ndf * 8, 1, 3, 1, 0, bias=False),
nn.Tanh()
)
def forward(self, x):
x = self.main(x)
x = (x > 0).float() # 使用阈值函数将输出值转换为0或1
return x
```
在上述代码中,我们使用`nn.Tanh()`函数将模型输出值映射到[-1, 1]区间内。然后,我们使用阈值函数将输出值转换为0或1。阈值函数可以通过判断输出值是否大于0来实现。如果输出值大于0,则将其设置为1;否则将其设置为0。
基于pytorch的DCGAN生成11*11的1-bit color图像代码
以下是基于 PyTorch 的 DCGAN 生成 11x11 的 1-bit color 图像的代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.utils as vutils
import numpy as np
# 设置随机数种子
manualSeed = 999
np.random.seed(manualSeed)
torch.manual_seed(manualSeed)
# 超参数设置
batch_size = 64
image_size = 11
nz = 100
nc = 1
ngf = 64
ndf = 64
num_epochs = 100
lr = 0.0002
beta1 = 0.5
# 加载数据集,这里使用的是随机生成的数据
dataset = torch.zeros((batch_size, nc, image_size, image_size))
for i in range(batch_size):
dataset[i] = torch.from_numpy(np.random.randint(2, size=(nc, image_size, image_size))).float()
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True)
# 定义生成器
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.main = nn.Sequential(
nn.ConvTranspose2d(nz, ngf * 4, 4, 1, 0, bias=False),
nn.BatchNorm2d(ngf * 4),
nn.ReLU(True),
nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 2),
nn.ReLU(True),
nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf),
nn.ReLU(True),
nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),
nn.Tanh()
)
def forward(self, input):
return self.main(input)
# 定义判别器
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.main = nn.Sequential(
nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 2),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 4),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(ndf * 4, 1, 4, 1, 0, bias=False),
nn.Sigmoid()
)
def forward(self, input):
return self.main(input).view(-1, 1).squeeze(1)
# 初始化生成器和判别器
netG = Generator()
netD = Discriminator()
print(netG)
print(netD)
# 定义损失函数和优化器
criterion = nn.BCELoss()
optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999))
optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999))
# 定义固定的噪声,用于生成图像
fixed_noise = torch.randn(64, nz, 1, 1)
# 开始训练
for epoch in range(num_epochs):
for i, data in enumerate(dataloader, 0):
# 更新判别器
netD.zero_grad()
real_cpu = data
batch_size = real_cpu.size(0)
label = torch.full((batch_size,), 1)
output = netD(real_cpu)
errD_real = criterion(output, label)
errD_real.backward()
D_x = output.mean().item()
noise = torch.randn(batch_size, nz, 1, 1)
fake = netG(noise)
label.fill_(0)
output = netD(fake.detach())
errD_fake = criterion(output, label)
errD_fake.backward()
D_G_z1 = output.mean().item()
errD = errD_real + errD_fake
optimizerD.step()
# 更新生成器
netG.zero_grad()
label.fill_(1)
output = netD(fake)
errG = criterion(output, label)
errG.backward()
D_G_z2 = output.mean().item()
optimizerG.step()
# 打印损失和生成的图像
if i % 100 == 0:
print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f'
% (epoch, num_epochs, i, len(dataloader),
errD.item(), errG.item(), D_x, D_G_z1, D_G_z2))
if (epoch == 0 and i == 0) or ((epoch + 1) % 10 == 0 and i == len(dataloader) - 1):
with torch.no_grad():
fake = netG(fixed_noise).detach().cpu()
vutils.save_image(fake, 'result/epoch_%03d_iter_%d.png' % (epoch, i), normalize=True)
# 保存模型
torch.save(netG.state_dict(), 'netG.pth')
torch.save(netD.state_dict(), 'netD.pth')
```
阅读全文