np.random.shuffle(self.indices)

时间: 2024-06-17 07:06:01 浏览: 11
np.random.shuffle(self.indices)是一个Numpy中的函数,用于将一个数组随机打乱顺序。其中,self.indices是需要打乱的数组,np.random.shuffle()会对其进行原地操作(即不返回新的数组),打乱数组的元素顺序。 举个例子,如果self.indices = [1, 2, 3, 4, 5],那么np.random.shuffle(self.indices)可能会将其打乱为[2, 1, 5, 4, 3]或[5, 2, 1, 4, 3]等。这个函数通常用于随机化数据集或样本的顺序,以避免模型在学习时出现过拟合或样本顺序对学习结果造成影响。
相关问题

class PPOMemory: def __init__(self, batch_size): self.states = [] self.probs = [] self.vals = [] self.actions = [] self.rewards = [] self.dones = [] self.batch_size = batch_size def sample(self): batch_step = np.arange(0, len(self.states), self.batch_size) indices = np.arange(len(self.states), dtype=np.int64) np.random.shuffle(indices) batches = [indices[i:i+self.batch_size] for i in batch_step] return np.array(self.states),np.array(self.actions),np.array(self.probs),\ np.array(self.vals),np.array(self.rewards),np.array(self.dones),batches def push(self, state, action, probs, vals, reward, done): self.states.append(state) self.actions.append(action) self.probs.append(probs) self.vals.append(vals) self.rewards.append(reward) self.dones.append(done) def clear(self): self.states = [] self.probs = [] self.actions = [] self.rewards = [] self.dones = [] self.vals = []

这段代码是一个 PPO 算法中的经验回放(experience replay)类,用于存储和采样交互数据。具体来说,这个类有以下几个成员函数: 1. 构造函数 __init__:初始化经验回放缓存的大小 batch_size,并创建空的列表来存储状态、动作、概率、价值、奖励和完成标志等信息。 2. 采样函数 sample:将经验回放缓存中的数据按照 batch_size 分成若干个 batch,然后随机打乱数据索引,最后返回一个包含所有 batch 的列表。每个 batch 包含一个状态状态列表、一个动作列表、一个概率列表、一个价值列表、一个奖励列表和一个完成标志列表。 3. 存储函数 push:将交互数据(即一个状态 state、一个动作 action、一个概率 probs、一个价值 vals、一个奖励 reward 和一个完成标志 done)存储到经验回放缓存中。 4. 清空函数 clear:清空经验回放缓存,以便下一次使用。 整个经验回放类的作用是存储和采样交互数据,以便训练 PPO 算法时能够从多个交互轮次中有效地学习。其中,采样函数 sample 会将数据随机打乱,以避免过于相关的数据干扰训练。

batch_size = x.size(0) tlist=[] for i in range(x.size(0)): y = x[i, :, :, :] y = y.permute(1, 2, 0) y = y.squeeze(2) y = y.cpu().numpy() img_norm_int = (y * 255).astype(np.uint8) img_255 = img_norm_int / img_norm_int.max() * 255 y = img_255.astype(np.uint8) lines = self.lsd.detect(cv2.convertScaleAbs(y))[0] if len(lines)<5: lines=cut_segments(lines, 5) lines=torch.tensor(lines) lines = np.array(lines) indices = np.arange(len(lines)) np.random.shuffle(indices) indices = indices[:5] lines = lines[indices] lines = torch.from_numpy(lines) if lines.shape == [5,1,4]: lines = torch.squeeze(lines,dim=1) tlist.append(lines) x = torch.stack(tlist, dim=0)

这段代码的作用是对输入的 `x` 张量进行预处理,并且返回一个新的张量 `x`,用于后续的处理。具体来说,它首先对输入的 `x` 张量进行循环,对每一个样本进行处理。对于每一个样本,它会进行以下步骤: 1. 将张量的第一维作为 batch_size,即 `batch_size = x.size(0)`。 2. 将张量沿着第一个维度进行循环,即 `for i in range(x.size(0)):`。 3. 将输入的 `x` 张量的第一个维度(batch_size)去掉,保留后面的三个维度作为一张图片的尺寸。 4. 对于每张图片,先将通道维度移到最后一个维度上,即 `y = y.permute(1, 2, 0)`。 5. 去掉通道维度,即 `y = y.squeeze(2)`。 6. 将图片转换为 numpy 数组,即 `y = y.cpu().numpy()`。 7. 对数组进行归一化,并转换为 uint8 类型,即 `img_norm_int = (y * 255).astype(np.uint8)`。 8. 将归一化后的数组进行缩放到 0-255 的范围内,即 `img_255 = img_norm_int / img_norm_int.max() * 255`。 9. 将缩放后的数组转换为 uint8 类型,即 `y = img_255.astype(np.uint8)`。 10. 通过 LSD 算法检测出图片中的线段,即 `lines = self.lsd.detect(cv2.convertScaleAbs(y))[0]`。 11. 判断检测出的线段是否小于 5 条,如果小于 5 条,则进行截取(即 `lines=cut_segments(lines, 5)`),补齐为 5 条,并转换为张量(即 `lines=torch.tensor(lines)`)。 12. 将线段转换为 numpy 数组,随机选择其中的 5 条线段(即 `indices = np.arange(len(lines))`、`np.random.shuffle(indices)`、`indices = indices[:5]`、`lines = lines[indices]`),并将其转换为张量(即 `lines = torch.from_numpy(lines)`)。 13. 如果线段的形状为 `[5,1,4]`,则将其压缩为 `[5,4]`。否则,不做处理(即 `if lines.shape == [5,1,4]:`、`lines = torch.squeeze(lines,dim=1)`)。 14. 将处理后的线段张量添加到 `tlist` 列表中(即 `tlist.append(lines)`)。 15. 将处理后的线段张量列表 `tlist` 堆叠成一个新的张量 `x`,并作为函数的返回值,即 `x = torch.stack(tlist, dim=0)`。 如果您有其他问题,可以继续提出。

相关推荐

最新推荐

recommend-type

2024年欧洲化学电镀市场主要企业市场占有率及排名.docx

2024年欧洲化学电镀市场主要企业市场占有率及排名.docx
recommend-type

计算机本科生毕业论文1111

老人服务系统
recommend-type

探索Elasticsearch的节点角色:集群的构建基石

Elasticsearch是一个基于Lucene的搜索引擎,它提供了一个分布式、多租户能力的全文搜索引擎,具有HTTP web接口和无模式的JSON文档。Elasticsearch是用Java编写的,但也可以作为服务在多种操作系统上运行,包括Windows、Linux和macOS。 ### Elasticsearch的主要特点包括: 1. **分布式性质**:Elasticsearch天生设计为分布式,可以很容易地扩展到数百台服务器,处理PB级别的数据。 2. **实时搜索**:Elasticsearch提供了快速的搜索能力,可以实时索引和搜索数据。 3. **高可用性**:通过自动分片和复制,Elasticsearch确保了数据的高可用性和容错性。 4. **多租户**:Elasticsearch支持多租户,允许多个用户或应用共享同一集群资源。 5. **丰富的查询语言**:Elasticsearch提供了强大的查询语言,支持结构化、非结构化数据的复杂搜索需求。 6. **横向扩展**:Elasticsearch可以通过简单地增加节点来扩展集群。 等
recommend-type

JAVA语言考试系统的设计与实现(论文+源代码+文献综述+外文翻译+开题报告).zip

JAVA语言考试系统的设计与实现(论文+源代码+文献综述+外文翻译+开题报告)
recommend-type

2024高频作业题答案.zip

2024高频作业题答案.zip
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。