np.random.shuffle(self.indices)
时间: 2024-06-17 16:06:01 浏览: 151
np.random.shuffle(self.indices)是一个Numpy中的函数,用于将一个数组随机打乱顺序。其中,self.indices是需要打乱的数组,np.random.shuffle()会对其进行原地操作(即不返回新的数组),打乱数组的元素顺序。
举个例子,如果self.indices = [1, 2, 3, 4, 5],那么np.random.shuffle(self.indices)可能会将其打乱为[2, 1, 5, 4, 3]或[5, 2, 1, 4, 3]等。这个函数通常用于随机化数据集或样本的顺序,以避免模型在学习时出现过拟合或样本顺序对学习结果造成影响。
相关问题
class PPOMemory: def __init__(self, batch_size): self.states = [] self.probs = [] self.vals = [] self.actions = [] self.rewards = [] self.dones = [] self.batch_size = batch_size def sample(self): batch_step = np.arange(0, len(self.states), self.batch_size) indices = np.arange(len(self.states), dtype=np.int64) np.random.shuffle(indices) batches = [indices[i:i+self.batch_size] for i in batch_step] return np.array(self.states),np.array(self.actions),np.array(self.probs),\ np.array(self.vals),np.array(self.rewards),np.array(self.dones),batches def push(self, state, action, probs, vals, reward, done): self.states.append(state) self.actions.append(action) self.probs.append(probs) self.vals.append(vals) self.rewards.append(reward) self.dones.append(done) def clear(self): self.states = [] self.probs = [] self.actions = [] self.rewards = [] self.dones = [] self.vals = []
这段代码是一个 PPO 算法中的经验回放(experience replay)类,用于存储和采样交互数据。具体来说,这个类有以下几个成员函数:
1. 构造函数 __init__:初始化经验回放缓存的大小 batch_size,并创建空的列表来存储状态、动作、概率、价值、奖励和完成标志等信息。
2. 采样函数 sample:将经验回放缓存中的数据按照 batch_size 分成若干个 batch,然后随机打乱数据索引,最后返回一个包含所有 batch 的列表。每个 batch 包含一个状态状态列表、一个动作列表、一个概率列表、一个价值列表、一个奖励列表和一个完成标志列表。
3. 存储函数 push:将交互数据(即一个状态 state、一个动作 action、一个概率 probs、一个价值 vals、一个奖励 reward 和一个完成标志 done)存储到经验回放缓存中。
4. 清空函数 clear:清空经验回放缓存,以便下一次使用。
整个经验回放类的作用是存储和采样交互数据,以便训练 PPO 算法时能够从多个交互轮次中有效地学习。其中,采样函数 sample 会将数据随机打乱,以避免过于相关的数据干扰训练。
batch_size = x.size(0) tlist=[] for i in range(x.size(0)): y = x[i, :, :, :] y = y.permute(1, 2, 0) y = y.squeeze(2) y = y.cpu().numpy() img_norm_int = (y * 255).astype(np.uint8) img_255 = img_norm_int / img_norm_int.max() * 255 y = img_255.astype(np.uint8) lines = self.lsd.detect(cv2.convertScaleAbs(y))[0] if len(lines)<5: lines=cut_segments(lines, 5) lines=torch.tensor(lines) lines = np.array(lines) indices = np.arange(len(lines)) np.random.shuffle(indices) indices = indices[:5] lines = lines[indices] lines = torch.from_numpy(lines) if lines.shape == [5,1,4]: lines = torch.squeeze(lines,dim=1) tlist.append(lines) x = torch.stack(tlist, dim=0)
这段代码的作用是对输入的 `x` 张量进行预处理,并且返回一个新的张量 `x`,用于后续的处理。具体来说,它首先对输入的 `x` 张量进行循环,对每一个样本进行处理。对于每一个样本,它会进行以下步骤:
1. 将张量的第一维作为 batch_size,即 `batch_size = x.size(0)`。
2. 将张量沿着第一个维度进行循环,即 `for i in range(x.size(0)):`。
3. 将输入的 `x` 张量的第一个维度(batch_size)去掉,保留后面的三个维度作为一张图片的尺寸。
4. 对于每张图片,先将通道维度移到最后一个维度上,即 `y = y.permute(1, 2, 0)`。
5. 去掉通道维度,即 `y = y.squeeze(2)`。
6. 将图片转换为 numpy 数组,即 `y = y.cpu().numpy()`。
7. 对数组进行归一化,并转换为 uint8 类型,即 `img_norm_int = (y * 255).astype(np.uint8)`。
8. 将归一化后的数组进行缩放到 0-255 的范围内,即 `img_255 = img_norm_int / img_norm_int.max() * 255`。
9. 将缩放后的数组转换为 uint8 类型,即 `y = img_255.astype(np.uint8)`。
10. 通过 LSD 算法检测出图片中的线段,即 `lines = self.lsd.detect(cv2.convertScaleAbs(y))[0]`。
11. 判断检测出的线段是否小于 5 条,如果小于 5 条,则进行截取(即 `lines=cut_segments(lines, 5)`),补齐为 5 条,并转换为张量(即 `lines=torch.tensor(lines)`)。
12. 将线段转换为 numpy 数组,随机选择其中的 5 条线段(即 `indices = np.arange(len(lines))`、`np.random.shuffle(indices)`、`indices = indices[:5]`、`lines = lines[indices]`),并将其转换为张量(即 `lines = torch.from_numpy(lines)`)。
13. 如果线段的形状为 `[5,1,4]`,则将其压缩为 `[5,4]`。否则,不做处理(即 `if lines.shape == [5,1,4]:`、`lines = torch.squeeze(lines,dim=1)`)。
14. 将处理后的线段张量添加到 `tlist` 列表中(即 `tlist.append(lines)`)。
15. 将处理后的线段张量列表 `tlist` 堆叠成一个新的张量 `x`,并作为函数的返回值,即 `x = torch.stack(tlist, dim=0)`。
如果您有其他问题,可以继续提出。
阅读全文