写一段代码,用java编写基于内容的推荐算法,推荐音乐家
时间: 2024-02-19 07:57:34 浏览: 87
基于内容的推荐算法
4星 · 用户满意度95%
好的,下面是一段简单的Java代码,用于实现基于内容的推荐算法,推荐音乐家:
```java
import java.util.*;
public class ContentBasedRecommender {
// 音乐家的特征数据
private Map<String, Map<String, Double>> musicianData;
public ContentBasedRecommender(Map<String, Map<String, Double>> musicianData) {
this.musicianData = musicianData;
}
// 计算两个音乐家之间的余弦相似度
private double cosineSimilarity(Map<String, Double> v1, Map<String, Double> v2) {
double dotProduct = 0.0;
double norm1 = 0.0;
double norm2 = 0.0;
for (String key : v1.keySet()) {
if (v2.containsKey(key)) {
dotProduct += v1.get(key) * v2.get(key);
}
norm1 += v1.get(key) * v1.get(key);
}
for (String key : v2.keySet()) {
norm2 += v2.get(key) * v2.get(key);
}
if (norm1 == 0.0 || norm2 == 0.0) {
return 0.0;
} else {
return dotProduct / (Math.sqrt(norm1) * Math.sqrt(norm2));
}
}
// 计算每个音乐家的推荐分数
public List<Recommendation> getRecommendations(Map<String, Double> userLikes) {
Map<String, Double> scores = new HashMap<>();
Map<String, Double> totalSim = new HashMap<>();
for (String musician : musicianData.keySet()) {
double score = 0.0;
double simSum = 0.0;
for (String like : userLikes.keySet()) {
if (musicianData.get(musician).containsKey(like)) {
double sim = cosineSimilarity(musicianData.get(musician), musicianData.get(like));
score += sim * userLikes.get(like);
simSum += sim;
}
}
if (simSum > 0.0) {
scores.put(musician, score);
totalSim.put(musician, simSum);
}
}
List<Recommendation> recommendations = new ArrayList<>();
for (String musician : scores.keySet()) {
double score = scores.get(musician);
double simSum = totalSim.get(musician);
double normScore = score / simSum;
recommendations.add(new Recommendation(musician, normScore));
}
Collections.sort(recommendations);
return recommendations;
}
public static void main(String[] args) {
// 初始化音乐家的特征数据
Map<String, Map<String, Double>> musicianData = new HashMap<>();
Map<String, Double> taylorSwift = new HashMap<>();
taylorSwift.put("Pop", 1.0);
taylorSwift.put("Country", 0.5);
taylorSwift.put("Folk", 0.2);
musicianData.put("Taylor Swift", taylorSwift);
Map<String, Double> beyonce = new HashMap<>();
beyonce.put("R&B", 1.0);
beyonce.put("Pop", 0.8);
beyonce.put("Hip Hop", 0.5);
musicianData.put("Beyonce", beyonce);
Map<String, Double> justinBieber = new HashMap<>();
justinBieber.put("Pop", 1.0);
justinBieber.put("Dance", 0.8);
justinBieber.put("R&B", 0.5);
musicianData.put("Justin Bieber", justinBieber);
// 初始化用户的历史喜好
Map<String, Double> userLikes = new HashMap<>();
userLikes.put("Pop", 1.0);
userLikes.put("Country", 0.8);
// 创建基于内容的推荐算法对象
ContentBasedRecommender recommender = new ContentBasedRecommender(musicianData);
// 获得推荐结果
List<Recommendation> recommendations = recommender.getRecommendations(userLikes);
// 输出推荐结果
for (Recommendation recommendation : recommendations) {
System.out.println(recommendation.getMusician() + " - " + recommendation.getScore());
}
}
}
class Recommendation implements Comparable<Recommendation> {
private String musician;
private double score;
public Recommendation(String musician, double score) {
this.musician = musician;
this.score = score;
}
public String getMusician() {
return musician;
}
public double getScore() {
return score;
}
@Override
public int compareTo(Recommendation other) {
return Double.compare(other.score, score);
}
}
```
这段代码实现了基于内容的推荐算法,推荐音乐家。其中,`ContentBasedRecommender`类表示推荐算法,`Recommendation`类表示推荐结果。在`main`方法中,初始化了音乐家的特征数据和用户的历史喜好,使用`ContentBasedRecommender`类获得推荐结果,并输出推荐结果。
阅读全文