修改代码:image_paths = ['E:/keti1/2023/xiangjibiaoding/image/1.jpg']为读取文件夹中全部照片
时间: 2023-09-23 14:04:06 浏览: 135
可以使用Python的os模块和glob模块来实现读取文件夹中全部照片的操作。修改后的代码如下所示:
```python
import cv2
import os
import glob
# 获取照片文件夹路径
folder_path = 'E:/keti1/2023/xiangjibiaoding/image/'
# 获取照片文件夹中所有照片的文件路径
image_paths = glob.glob(os.path.join(folder_path, '*.jpg'))
# 遍历照片文件路径列表,读取并显示每一张照片
for image_path in image_paths:
image = cv2.imread(image_path)
cv2.imshow('image', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
上述代码中,我们使用`glob.glob()`函数获取了照片文件夹中所有以`.jpg`为后缀的文件路径,然后遍历这个文件路径列表,读取并显示每一张照片。
相关问题
修改以下代码使其能够输出模型预测结果: def open_image(self): file_dialog = QFileDialog() file_paths, _ = file_dialog.getOpenFileNames(self, "选择图片", "", "Image Files (*.png *.jpg *.jpeg)") if file_paths: self.display_images(file_paths) def preprocess_images(self, image_paths): data_transform = transforms.Compose([ transforms.CenterCrop(150), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) self.current_image_paths = [] images = [] for image_path in image_paths: image = Image.open(image_path) image = data_transform(image) image = torch.unsqueeze(image, dim=0) images.append(image) self.current_image_paths.append(image_path) return images def predict_images(self): if not self.current_image_paths: return for i, image_path in enumerate(self.current_image_paths): image = self.preprocess_image(image_path) output = self.model(image) predicted_class = self.class_dict[output.argmax().item()] self.result_labels[i].setText(f"Predicted Class: {predicted_class}") self.progress_bar.setValue((i+1)*20) def display_images(self, image_paths): for i, image_path in enumerate(image_paths): image = QImage(image_path) image = image.scaled(300, 300, Qt.KeepAspectRatio) if i == 0: self.image_label_1.setPixmap(QPixmap.fromImage(image)) elif i == 1: self.image_label_2.setPixmap(QPixmap.fromImage(image)) elif i == 2: self.image_label_3.setPixmap(QPixmap.fromImage(image)) elif i == 3: self.image_label_4.setPixmap(QPixmap.fromImage(image)) elif i == 4: self.image_label_5.setPixmap(QPixmap.fromImage(image))
请注意,代码中的 preprocess_images 函数和 predict_images 函数中的 self.preprocess_image(image_path) 需要修改为 self.preprocess_images([image_path])。修改后的代码如下:
```
def open_image(self):
file_dialog = QFileDialog()
file_paths, _ = file_dialog.getOpenFileNames(self, "选择图片", "", "Image Files (*.png *.jpg *.jpeg)")
if file_paths:
self.display_images(file_paths)
def preprocess_images(self, image_paths):
data_transform = transforms.Compose([
transforms.CenterCrop(150),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
self.current_image_paths = []
images = []
for image_path in image_paths:
image = Image.open(image_path)
image = data_transform(image)
image = torch.unsqueeze(image, dim=0)
images.append(image)
self.current_image_paths.append(image_path)
return images
def predict_images(self):
if not self.current_image_paths:
return
for i, image_path in enumerate(self.current_image_paths):
image = self.preprocess_images([image_path])
output = self.model(image[0])
predicted_class = self.class_dict[output.argmax().item()]
self.result_labels[i].setText(f"Predicted Class: {predicted_class}")
self.progress_bar.setValue((i+1)*20)
def display_images(self, image_paths):
for i, image_path in enumerate(image_paths):
image = QImage(image_path)
image = image.scaled(300, 300, Qt.KeepAspectRatio)
if i == 0:
self.image_label_1.setPixmap(QPixmap.fromImage(image))
elif i == 1:
self.image_label_2.setPixmap(QPixmap.fromImage(image))
elif i == 2:
self.image_label_3.setPixmap(QPixmap.fromImage(image))
elif i == 3:
self.image_label_4.setPixmap(QPixmap.fromImage(image))
elif i == 4:
self.image_label_5.setPixmap(QPixmap.fromImage(image))
```
dog_image_paths = 'dog vs cat/dataset/training_set/dogs' dog_images = os.listdir(dog_image_paths) new_style = {'grid': False} plt.rc('axes', **new_style) _, ax = plt.subplots(3, 3, sharex='col', sharey='row', figsize=(12, 12)) for i in range(9): image = dog_images[i] img = plt.imread( dog_image_paths + '/' + image) ax[i // 3, i % 3].imshow(img)
这段代码是用来读取狗的图像数据,并将其显示在一个 3x3 的图像网格中。具体解释如下:
- `dog_image_paths` 是存放狗图像数据的路径。
- `dog_images = os.listdir(dog_image_paths)` 读取 `dog_image_paths` 中的所有图像文件名,并存储在 `dog_images` 列表中。
- `new_style = {'grid': False}` 定义一个新的样式字典,其中 `grid` 键设置为 `False`,表示不显示网格线。
- `plt.rc('axes', **new_style)` 设置 matplotlib 中的 `axes` 样式为 `new_style`。
- `_, ax = plt.subplots(3, 3, sharex='col', sharey='row', figsize=(12, 12))` 创建一个 3x3 的子图,并返回一个 `ax` 数组,用于访问每个子图。`sharex` 和 `sharey` 参数表示共享 x 轴和 y 轴,`figsize` 参数设置整个图像的大小。
- `for i in range(9):` 对于每个子图:
- `image = dog_images[i]` 获取第 `i` 张狗的图像文件名。
- `img = plt.imread( dog_image_paths + '/' + image)` 读取图像数据,并存储在 `img` 变量中。
- `ax[i // 3, i % 3].imshow(img)` 在第 `i` 个子图中显示图像数据。
这段代码是使用 Matplotlib 库来可视化图像数据的一个例子。
阅读全文
相关推荐













