写一段python代码,测试这个python方法 def wavelet_denoising(data, wavelet='db4', level=1 ,thresh_mode='hard'): coeff = pywt.wavedec(data, wavelet, mode='per') sigma = Denoising.mad(coeff[-level]) uthresh = sigma * np.sqrt(2*np.log(len(data))) coeff[1:] = (pywt.threshold(i, value=uthresh, mode=thresh_mode) for i in coeff[1:]) return pywt.waverec(coeff, wavelet, mode='per')
时间: 2023-02-11 11:45:38 浏览: 642
下面是一段使用 wavelet_denoising 方法的 Python 代码示例:
```python
import pywt
import numpy as np
def wavelet_denoising(data, wavelet='db4', level=1, thresh_mode='hard'):
coeff = pywt.wavedec(data, wavelet, mode='per')
sigma = np.median(np.abs(coeff[-level])) / 0.6745
uthresh = sigma * np.sqrt(2*np.log(len(data)))
coeff[1:] = [pywt.threshold(i, value=uthresh, mode=thresh_mode) for i in coeff[1:]]
return pywt.waverec(coeff, wavelet, mode='per')
# 生成噪声数据
np.random.seed(123)
data = np.random.randn(1000)
noisy_data = data + 0.5 * np.random.randn(1000)
# 去噪
cleaned_data = wavelet_denoising(noisy_data)
```
在上面的代码中,我们首先导入了 pywt 和 numpy 库。然后我们定义了 wavelet_denoising 函数。其中,data 是需要去噪的数据,wavelet 参数是使用的小波函数,默认为 'db4',level 参数是需要去噪的小波系数层数,默认为1,thresh_mode 参数是阈值类型,默认为 'hard'。在代码中我们用 wavedec 函数分解数据的小波系数,然后用 mad 方法计算系数的标准差,并使用阈值函数对小波系数进行阈值处理,最后用 waverec 函数重构数据。
阅读全文