解释代码 def wavelet_denoising(data, wavelet='db4', level=1 ,thresh_mode='hard'): coeff = pywt.wavedec(data, wavelet, mode='per') sigma = mad(coeff[-level]) uthresh = sigma * np.sqrt(2*np.log(len(data))) coeff[1:] = (pywt.threshold(i, value=uthresh, mode=thresh_mode) for i in coeff[1:]) return pywt.waverec(coeff, wavelet, mode='per')

时间: 2023-01-11 08:55:36 浏览: 100
这段代码实现了小波去噪的功能。它使用 pywt 库进行小波变换和逆小波变换。 具体来讲: - 首先,通过 `pywt.wavedec` 函数对数据进行小波分解,使用的小波函数为 db4,分解模式为 per。 - 然后,计算小波系数的均方差绝对偏差 (MAD)。 - 接着,根据给定的层数 (level) 计算阈值。 - 接下来,对除第一层以外的所有系数进行阈值处理,使用的阈值处理模式 (thresh_mode) 为 hard。 - 最后,通过 `pywt.waverec` 函数进行逆小波变换,将分解后的系数还原为原始数据。
相关问题

写一段python代码,测试这个python方法 def wavelet_denoising(data, wavelet='db4', level=1 ,thresh_mode='hard'): coeff = pywt.wavedec(data, wavelet, mode='per') sigma = Denoising.mad(coeff[-level]) uthresh = sigma * np.sqrt(2*np.log(len(data))) coeff[1:] = (pywt.threshold(i, value=uthresh, mode=thresh_mode) for i in coeff[1:]) return pywt.waverec(coeff, wavelet, mode='per')

下面是一段使用 wavelet_denoising 方法的 Python 代码示例: ```python import pywt import numpy as np def wavelet_denoising(data, wavelet='db4', level=1, thresh_mode='hard'): coeff = pywt.wavedec(data, wavelet, mode='per') sigma = np.median(np.abs(coeff[-level])) / 0.6745 uthresh = sigma * np.sqrt(2*np.log(len(data))) coeff[1:] = [pywt.threshold(i, value=uthresh, mode=thresh_mode) for i in coeff[1:]] return pywt.waverec(coeff, wavelet, mode='per') # 生成噪声数据 np.random.seed(123) data = np.random.randn(1000) noisy_data = data + 0.5 * np.random.randn(1000) # 去噪 cleaned_data = wavelet_denoising(noisy_data) ``` 在上面的代码中,我们首先导入了 pywt 和 numpy 库。然后我们定义了 wavelet_denoising 函数。其中,data 是需要去噪的数据,wavelet 参数是使用的小波函数,默认为 'db4',level 参数是需要去噪的小波系数层数,默认为1,thresh_mode 参数是阈值类型,默认为 'hard'。在代码中我们用 wavedec 函数分解数据的小波系数,然后用 mad 方法计算系数的标准差,并使用阈值函数对小波系数进行阈值处理,最后用 waverec 函数重构数据。

写一段python代码,测试下面这个python方法 def wavelet_denoising(data, wavelet='db4', level=1 ,thresh_mode='hard'): coeff = pywt.wavedec(data, wavelet, mode='per') sigma = Denoising.mad(coeff[-level]) uthresh = sigma * np.sqrt(2*np.log(len(data))) coeff[1:] = (pywt.threshold(i, value=uthresh, mode=thresh_mode) for i in coeff[1:]) return pywt.waverec(coeff, wavelet, mode='per')

这是一段用来进行小波去噪的python代码。它使用 PyWavelets 库中的 wavelet 和 wavedec 函数来对数据进行小波变换,然后使用阈值函数 threshold 对系数进行阈值处理。最后,使用 waverec 函数将系数重构成原始信号。 其中定义了三个参数, data 为输入数据, wavelet 为使用的小波函数,默认为db4, level 为小波变换的层数,默认为1, thresh_mode 为阈值函数使用的模式,默认为hard。 请注意,本段代码中还需要引用Denoising和np库。 代码示例: ```python import numpy as np import pywt from pywt import wavedec from pywt import waverec from pywt import threshold from pywt import db4 class Denoising: @staticmethod def mad(coeff): """ Median Absolute Deviation: a "Robust" version of standard deviation. Indices variabililty of the sample. https://en.wikipedia.org/wiki/Median_absolute_deviation """ return np.median(np.abs(coeff - np.median(coeff))) def wavelet_denoising(data, wavelet=db4, level=1 ,thresh_mode=hard): coeff = pywt.wavedec(data, wavelet, mode='per') sigma = Denoising.mad(coeff[-level]) uthresh = sigma * np.sqrt(2*np.log(len(data))) coeff[1:] = (pywt.threshold(i, value=uthresh, mode=thresh_mode) for i in coeff[1:]) return pywt.waverec(coeff, wavelet, mode='per') ``` 使用示例: ```python import numpy as np data = np.random.normal(size=1024) result = wavelet_denoising(data) ``` 请注意变量名和函数名需要准确,否则运行时会出现错误。

相关推荐

import pandas as pd import matplotlib.pyplot as plt import numpy as np import pywt file_name = 'E:/liuyuan/ceshi/zhongyao/Subject_1_0cmH20_norm_breaths.csv' data = pd.read_csv(file_name, skiprows=1, usecols=[0, 2], names=['Time', 'Flow']) x = list() y = list() for i in range(len(data)): x.append(float(data.values[i][0])) y.append(float(data.values[i][1])) start_index = 0 end_index = 5372 time = np.arange(start_index, end_index) flow = np.arange(start_index, end_index) time = data['Time'][start_index:end_index] flow = data['Flow'] def wavelet_filter(data): wavelet = 'db4' # 选择小波基函数 level = 5 # 小波变换的层数 # 小波变换 coeffs = pywt.wavedec(data, wavelet, level=level) threshold = np.std(coeffs[-level]) * np.sqrt(2 * np.log(len(data))) coeffs[1:] = (pywt.threshold(c, threshold, mode='soft') for c in coeffs[1:]) filtered_data = pywt.waverec(coeffs, wavelet) return filtered_data 对Flow进行小波变换滤波 filtered_flow = wavelet_filter(flow) fig, ax = plt.subplots(figsize=(10, 5)) plt.xlim(0, 60) ax.set_ylim(-0.7, 0.7) ax.set_xlabel('Time(s)', fontsize=10) ax.set_ylabel('Flow(L/s)', fontsize=10) ax.plot(time, filtered_flow, label='Filtered Flow') ax.legend() ax.grid(True, linewidth=0.3, alpha=0.5, color='gray') plt.tight_layout() # 自动调整子图的布局 plt.show()import pandas as pd import matplotlib.pyplot as plt import numpy as np import pywt file_name = 'E:/liuyuan/ceshi/zhongyao/Subject_1_0cmH20_norm_breaths.csv' data = pd.read_csv(file_name, skiprows=1, usecols=[0, 2], names=['Time', 'Flow']) x = list() y = list() for i in range(len(data)): x.append(float(data.values[i][0])) y.append(float(data.values[i][1])) start_index = 0 end_index = 5372 time = np.arange(start_index, end_index) flow = np.arange(start_index, end_index) time = data['Time'][start_index:end_index] flow = data['Flow'] def wavelet_filter(data): wavelet = 'db4' # 选择小波基函数 level = 5 # 小波变换的层数 coeffs = pywt.wavedec(data, wavelet, level=level) threshold = np.std(coeffs[-level]) * np.sqrt(2 * np.log(len(data))) coeffs[1:] = (pywt.threshold(c, threshold, mode='soft') for c in coeffs[1:]) # 逆小波变换 filtered_data = pywt.waverec(coeffs, wavelet) return filtered_data filtered_flow = wavelet_filter(flow) fig, ax = plt.subplots(figsize=(10, 5)) plt.xlim(0, 60) ax.set_ylim(-0.7, 0.7) ax.set_xlabel('Time(s)', fontsize=10) ax.set_ylabel('Flow(L/s)', fontsize=10) ax.plot(time, filtered_flow, label='Filtered Flow') ax.legend() ax.grid(True, linewidth=0.3, alpha=0.5, color='gray') plt.tight_layout() plt.show()在此代码上添加切分代码,并按照合适窗口大小切分完准确显示

最新推荐

recommend-type

node-v5.1.1-linux-x64.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

基于Android+Java的 AES 加密算法分析.zip

Android是一种基于Linux内核(不包含GNU组件)的自由及开放源代码的移动操作系统,主要应用于移动设备,如智能手机和平板电脑。该系统最初由安迪·鲁宾开发,后被Google公司收购并注资,随后与多家硬件制造商、软件开发商及电信营运商共同研发改良。 Android操作系统的特点包括: 开放源代码:Android系统采用开放源代码模式,允许开发者自由访问、修改和定制操作系统,这促进了技术的创新和发展,使得Android系统具有高度的灵活性和可定制性。 多任务处理:Android允许用户同时运行多个应用程序,并且可以轻松地在不同应用程序之间切换,提高了效率和便利性。 丰富的应用生态系统:Android系统拥有庞大的应用程序生态系统,用户可以从Google Play商店或其他第三方应用市场下载和安装各种各样的应用程序,满足各种需求。 可定制性:Android操作系统可以根据用户的个人喜好进行定制,用户可以更改主题、小部件和图标等,以使其界面更符合个人风格和偏好。 多种设备支持:Android操作系统可以运行在多种不同类型的设备上,包括手机、平板电脑、智能电视、汽车导航系统等。 此外,Android系统还有一些常见的问题,如应用崩溃、电池耗电过快、Wi-Fi连接问题、存储空间不足、更新问题等。针对这些问题,用户可以尝试一些基本的解决方法,如清除应用缓存和数据、降低屏幕亮度、关闭没有使用的连接和传感器、限制后台运行的应用、删除不需要的文件和应用等。 随着Android系统的不断发展,其功能和性能也在不断提升。例如,最新的Android版本引入了更多的安全性和隐私保护功能,以及更流畅的用户界面和更强大的性能。此外,Android系统也在不断探索新的应用场景,如智能家居、虚拟现实、人工智能等领域。 总之,Android系统是一种功能强大、灵活可定制、拥有丰富应用生态系统的移动操作系统,在全球范围内拥有广泛的用户基础。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

spring添加xml配置文件

1. 创建一个新的Spring配置文件,例如"applicationContext.xml"。 2. 在文件头部添加XML命名空间和schema定义,如下所示: ``` <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

输出这段Python代码输出所有3位整数中,个位是5且是3的倍数的整数

``` for i in range(100,1000): if i%10 == 5 and i%3 == 0: print(i) ``` 输出结果: ``` 105 135 165 195 225 255 285 315 345 375 405 435 465 495 525 555 585 615 645 675 705 735 765 795 825 855 885 915 945 975 ```