import pandas as pd import matplotlib.pyplot as plt import numpy as np import pywt file_name = 'E:/liuyuan/ceshi/zhongyao/Subject_1_0cmH20_norm_breaths.csv' data = pd.read_csv(file_name, skiprows=1, usecols=[0, 2], names=['Time', 'Flow']) x = list() y = list() for i in range(len(data)): x.append(float(data.values[i][0])) y.append(float(data.values[i][1])) start_index = 0 end_index = 5372 time = np.arange(start_index, end_index) flow = np.arange(start_index, end_index) time = data['Time'][start_index:end_index] flow = data['Flow'] def wavelet_filter(data): wavelet = 'db4' # 选择小波基函数 level = 5 # 小波变换的层数 # 小波变换 coeffs = pywt.wavedec(data, wavelet, level=level) threshold = np.std(coeffs[-level]) * np.sqrt(2 * np.log(len(data))) coeffs[1:] = (pywt.threshold(c, threshold, mode='soft') for c in coeffs[1:]) filtered_data = pywt.waverec(coeffs, wavelet) return filtered_data 对Flow进行小波变换滤波 filtered_flow = wavelet_filter(flow) fig, ax = plt.subplots(figsize=(10, 5)) plt.xlim(0, 60) ax.set_ylim(-0.7, 0.7) ax.set_xlabel('Time(s)', fontsize=10) ax.set_ylabel('Flow(L/s)', fontsize=10) ax.plot(time, filtered_flow, label='Filtered Flow') ax.legend() ax.grid(True, linewidth=0.3, alpha=0.5, color='gray') plt.tight_layout() # 自动调整子图的布局 plt.show()import pandas as pd import matplotlib.pyplot as plt import numpy as np import pywt file_name = 'E:/liuyuan/ceshi/zhongyao/Subject_1_0cmH20_norm_breaths.csv' data = pd.read_csv(file_name, skiprows=1, usecols=[0, 2], names=['Time', 'Flow']) x = list() y = list() for i in range(len(data)): x.append(float(data.values[i][0])) y.append(float(data.values[i][1])) start_index = 0 end_index = 5372 time = np.arange(start_index, end_index) flow = np.arange(start_index, end_index) time = data['Time'][start_index:end_index] flow = data['Flow'] def wavelet_filter(data): wavelet = 'db4' # 选择小波基函数 level = 5 # 小波变换的层数 coeffs = pywt.wavedec(data, wavelet, level=level) threshold = np.std(coeffs[-level]) * np.sqrt(2 * np.log(len(data))) coeffs[1:] = (pywt.threshold(c, threshold, mode='soft') for c in coeffs[1:]) # 逆小波变换 filtered_data = pywt.waverec(coeffs, wavelet) return filtered_data filtered_flow = wavelet_filter(flow) fig, ax = plt.subplots(figsize=(10, 5)) plt.xlim(0, 60) ax.set_ylim(-0.7, 0.7) ax.set_xlabel('Time(s)', fontsize=10) ax.set_ylabel('Flow(L/s)', fontsize=10) ax.plot(time, filtered_flow, label='Filtered Flow') ax.legend() ax.grid(True, linewidth=0.3, alpha=0.5, color='gray') plt.tight_layout() plt.show()在此代码上添加切分代码,并按照合适窗口大小切分完准确显示
时间: 2024-04-11 08:28:37 浏览: 171
你可以在代码中添加以下切分代码,来按照合适的窗口大小进行切分并准确显示:
```python
window_size = 100 # 窗口大小
# 切分数据
num_windows = len(filtered_flow) // window_size
flow_windows = np.array_split(filtered_flow, num_windows)
# 绘制切分后的数据
fig, axs = plt.subplots(num_windows, figsize=(10, 5*num_windows), sharex=True)
for i, ax in enumerate(axs):
ax.plot(time[i*window_size:(i+1)*window_size], flow_windows[i])
ax.set_ylim(-0.7, 0.7)
ax.set_xlabel('Time(s)', fontsize=10)
ax.set_ylabel('Flow(L/s)', fontsize=10)
ax.grid(True, linewidth=0.3, alpha=0.5, color='gray')
plt.tight_layout()
plt.show()
```
这段代码将数据按照窗口大小切分,并在多个子图中分别绘制每个窗口的数据。你可以根据窗口大小调整`window_size`的值来适应你的需求。
相关问题
import numpy as np import pandas as pd import matplotlib import matplotlib.pyplot as plt import seaborn as sns import chardet
### 正确导入Python数据分析和可视化库的方法
为了进行高效的数据分析与可视化,在Python环境中正确安装并导入必要的库至关重要。以下是关于`numpy`, `pandas`, `matplotlib`, `seaborn` 和 `chardet` 的具体导入方法:
#### 导入库
在开始任何项目之前,确保已经安装了所需的软件包。如果尚未安装这些库,可以使用pip命令来完成安装。
```bash
pip install numpy pandas matplotlib seaborn chardet
```
一旦确认所需库已成功安装,则可以在脚本顶部按照如下方式依次引入各个模块:
```python
import numpy as np # 提供多维数组对象以及派生对象(如掩码数组、矩阵),并且支持大量的函数操作。
import pandas as pd # 数据处理和分析的核心工具之一;提供了DataFrame结构用于存储表格型数据集。
import matplotlib.pyplot as plt # Python中最流行的绘图库之一,能够创建静态、动态交互式的图表。
import seaborn as sns # 基于Matplotlib之上构建而成的统计图形库,简化了许多常见的统计数据可视化的实现过程。
import chardet # 自动检测字符编码类型的实用程序,对于读取未知编码格式文件非常有用。
```
设置字体以便正常显示中文标签和其他特殊符号也是重要的一步。可以通过修改`matplotlib`的相关参数来进行配置:
```python
plt.rcParams['font.sans-serif'] = 'SimHei' # 设置默认字体为黑体以支持中文显示
plt.rcParams['axes.unicode_minus'] = False # 解决负号无法正确显示的问题
```
上述代码片段展示了如何准备环境,使得后续的数据处理工作更加顺畅[^1]。
import pandas as pd import matplotlib.pyplot as plt %matplotlib inline import numpy as np
import pandas as pd是Python中用于数据分析和处理的库,它提供了丰富的数据结构和数据分析工具。通过使用pd别名,我们可以方便地引用pandas库中的函数和类。
matplotlib.pyplot是Python中用于绘制图表和可视化数据的库。通过使用plt别名,我们可以方便地引用matplotlib.pyplot库中的函数和类。
%matplotlib inline是Jupyter Notebook中的魔术命令,它用于在Notebook中显示matplotlib绘制的图表。这个命令告诉Notebook将图表直接嵌入到输出单元格中,而不是弹出一个新窗口显示图表。
import numpy as np是导入NumPy库,NumPy是Python中用于科学计算的库,它提供了高性能的多维数组对象和各种数学函数。
阅读全文
相关推荐
















